




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
天成大联考2025届数学高一下期末考试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.的展开式中含的项的系数为()A.-1560 B.-600 C.600 D.15602.在长方体中,,,则直线与平面所成角的正弦值为()A. B. C. D.3.已知是等差数列,且,,则()A.-5 B.-11 C.-12 D.34.在中,内角,,的对边分别为,,,且,,为的面积,则的最大值为()A.1 B.2 C. D.5.一个圆柱的侧面展开图是一个正方形,这个圆柱全面积与侧面积的比为()A. B. C. D.6.已知,是两个单位向量,且夹角为,则与数量积的最小值为()A. B. C. D.7.已知是第一象限角,那么是()A.第一象限角 B.第二象限角C.第一或第二象限角 D.第一或第三象限角8.中,,,,则()A.1 B. C. D.49.一个圆柱的轴截面是正方形,其侧面积与一个球的表面积相等,那么这个圆柱的体积与这个球的体积之比为()A.1:3 B.3:1 C.2:3 D.3:210.已知函数,若方程在上有且只有三个实数根,则实数的取值范围为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.设函数,则________.12.函数的值域是______.13.设,满足约束条件,则的最小值是______.14.若直线平分圆,则的值为________.15.数列满足,(且),则数列的通项公式为________.16.甲船在岛的正南处,,甲船以每小时的速度向正北方向航行,同时乙船自出发以每小时的速度向北偏东的方向驶去,甲、乙两船相距最近的距离是_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,四棱锥中,,平面平面,,为的中点.(1)求证://平面;(2)求点到面的距离(3)求二面角平面角的正弦值18.已知向量,.(1)当为何值时,与垂直?(2)若,,且三点共线,求的值.19.如图,在中,,,点在边上,且,.(1)求;(2)求的长.20.如图,已知平面,为矩形,分别为的中点,.(1)求证:平面;(2)求证:面平面;(3)求点到平面的距离.21.若不等式恒成立,求实数a的取值范围。
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】的项可以由或的乘积得到,所以含的项的系数为,故选A.2、D【解析】
由题意,由于图形中已经出现了两两垂直的三条直线,所以可以利用空间向量的方法求解直线与平面所成的夹角.【详解】解:以点为坐标原点,以所在的直线为轴、轴、轴,建立空间直角坐标系,
则,
为平面的一个法向量.
.
∴直线与平面所成角的正弦值为.故选:D.【点睛】此题重点考查了利用空间向量,抓住直线与平面所成的角与该直线的方向向量与平面的法向量的夹角之间的关系,利用向量方法解决立体几何问题.3、B【解析】
由是等差数列,求得,则可求【详解】∵是等差数列,设,∴故故选:B【点睛】本题考查等差数列的通项公式,考查计算能力,是基础题4、C【解析】
先由正弦定理,将化为,结合余弦定理,求出,再结合正弦定理与三角形面积公式,可得,化简整理,即可得出结果.【详解】因为,所以可化为,即,可得,所以.又由正弦定理得,,所以,当且仅当时,取得最大值.故选C【点睛】本题主要考查解三角形,熟记正弦定理与余弦定理即可,属于常考题型.5、A【解析】解:设圆柱底面积半径为r,则高为2πr,全面积:侧面积=[(2πr)2+2πr2]:(2πr)2这个圆柱全面积与侧面积的比为,故选A6、B【解析】
根据条件可得,,,然后进行数量积的运算即可.【详解】根据条件,,,,当时,取最小值.故选:B【点睛】本题考查了向量数量积的运算,同时考查了二次函数的最值,属于基础题.7、D【解析】
根据象限角写出的取值范围,讨论即可知在第一或第三象限角【详解】依题意得,则,当时,是第一象限角当时,是第三象限角【点睛】本题主要考查象限角,属于基础题.8、C【解析】
利用三角形内角和为可求得;利用正弦定理可求得结果.【详解】由正弦定理得:本题正确选项:【点睛】本题考查正弦定理解三角形,属于基础题.9、D【解析】
设圆柱的底面半径为,利用圆柱侧面积公式与球的表面积公式建立关系式,算出球的半径,再利用圆柱与球的体积公式加以计算,可得所求体积之比.【详解】设圆柱的底面半径为,轴截面正方形边长,则,可得圆柱的侧面积,再设与圆柱表面积相等的球半径为,则球的表面积,解得,因此圆柱的体积为,球的体积为,因此圆柱的体积与球的体积之比为.故选:D.【点睛】本题主要考查了圆柱的侧面积和体积公式,以及球的表面积和体积公式的应用,其中解答中熟记公式,合理计算半径之间的关系是解答的关键,着重考查了推理与运算能力,属于基础题.10、A【解析】
先辅助角公式化简,先求解方程的根的表达式,再根据在上有且只有三个实数根列出对应的不等式求解即可.【详解】.又在上有且只有三个实数根,故,解得或,即或,.设直线与在上从做到右的第三个交点为,第四个交点为.则,.故.故实数的取值范围为.故选:A【点睛】本题主要考查了根据三角函数的根求解参数范围的问题,需要根据题意先求解根的解析式,进而根据区间中的零点个数列出区间端点满足的关系式求解即可.属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
利用反三角函数的定义,解方程即可.【详解】因为函数,由反三角函数的定义,解方程,得,所以.故答案为:【点睛】本题考查了反三角函数的定义,属于基础题.12、【解析】
将函数化为的形式,再计算值域。【详解】因为所以【点睛】本题考查三角函数的值域,属于基础题。13、1【解析】
根据不等式组,画出可行域,数形结合求解即可.【详解】由题可知,可行域如下图所示:容易知:,可得:,结合图像可知,的最小值在处取得,则.故答案为:1.【点睛】本题考查线性规划的基础问题,只需作出可行域,数形结合即可求解.14、1【解析】
把圆的一般式方程化为标准方程得到圆心,根据直线过圆心,把圆心的坐标代入到直线的方程,得到关于的方程,解方程即可【详解】圆的标准方程为,则圆心为直线过圆心解得故答案为【点睛】本题考查的是直线与圆的位置关系,解题的关键是求出圆心的坐标,属于基础题15、【解析】
利用累加法和裂项求和得到答案.【详解】当时满足故答案为【点睛】本题考查了数列的累加法,裂项求和法,意在考查学生对于数列公式和方法的灵活运用.16、【解析】
根据条件画出示意图,在三角形中利用余弦定理求解相距的距离,利用二次函数对称轴及可求解出最值.【详解】假设经过小时两船相距最近,甲、乙分别行至,,如图所示,可知,,,.当小时时甲、乙两船相距最近,最近距离为.【点睛】本题考查解三角形的实际应用,难度较易.关键是通过题意将示意图画出来,然后将待求量用未知数表示,最后利用函数思想求最值.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见详解;(2);(3)【解析】
(1)通过取中点,利用中位线定理可得四变形为平行四边形,然后利用线面平行的判定定理,可得结果.(2)根据,可得平面,可得结果.(3)作,作,可得二面角平面角为,然后计算,可得结果.【详解】(1)取中点,连接,如图由为的中点,所以//且又,且,所以//且,故//且,所以四变形为平行四边形,故//又平面,平面所以//平面(2)由,平面平面平面,平面平面所以平面,又平面所以,由,所以为正三角形,所以则平面所以平面,且所以点到面的距离即(3)作交于点,作交于点,连接由平面平面,平面平面平面平面,所以平面,平面,所以,又平面,所以平面又平面,所以所以二面角平面角为,又为等腰直角三角形所以,所以所以又二面角平面角为故所以二面角平面角的正弦值为【点睛】本题考查了线面平行的判定定理,还考查了点面距和面面角的求法,第(3)中难点在于找到二面角的平面角,掌握定义以及综合线面,面面的位置关系,细心计算,属中档题.18、(1);(2).【解析】
(1)利用坐标运算表示出与;根据向量垂直可知数量积为零,从而构造方程求得结果;(2)利用坐标运算表示出,根据三点共线可知,根据向量共线的坐标表示可构造方程求得结果.【详解】(1),与垂直,解得:(2)三点共线,,解得:【点睛】本题考查平面向量的坐标运算,涉及到向量平行和垂直的坐标表示;关键是能够明确两向量垂直则数量积等于零,能够利用平行关系表示三点共线.19、(1);(2)7.【解析】试题分析:(I)在中,利用外角的性质,得即可计算结果;(II)由正弦定理,计算得,在中,由余弦定理,即可计算结果.试题解析:(I)在中,∵,∴∴(II)在中,由正弦定理得:在中,由余弦定理得:∴考点:正弦定理与余弦定理.20、(1)证明见解析;(2)证明见解析;(3).【解析】
(1)利用线面平行的判定定理,寻找面PAD内的一条直线平行于MN,即可证出;(2)先证出一条直线垂直于面PCD,依据第一问结论知,MN也垂直于面PCD,利用面面垂直的判定定理即可证出;(3)依据等积法,即可求出点到平面的距离.【详解】证明:(1)取中点为,连接分别为的中点,是平行四边形,平面,平面,∴平面证明:(2)因为平面,所以,而,面PAD,而面,所以,由,为的终点,所以由于平面,又由(1)知,平面,平面,∴平面平面解:(3),,,则点到平面的距离为(也可构造三棱锥)【点睛】
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度保姆聘用家政服务合同细则
- 2025版公共区域深度保洁合同范本
- 二零二五年度办公室租赁合同含企业办公设备租赁
- 二零二五年度办公设备智能化解决方案开发合同范本
- 2025版测绘员保密协议范本下载
- 二零二五年度车管所车辆抵押贷款服务协议
- 二零二五年度环保型产品包装运输专项合同
- 二零二五年商业保洁临时工劳动合同示范文本
- 二零二五年度办公室租赁合同租赁费用调整与支付方式
- 2025版车库租赁与停车费用结算规范合同
- 《大学生心理健康教育(兰州大学版)》章节测试题及答案
- 食品生产与销售合作协议
- 羽毛球运动知识考试题库(含答案)
- 阴茎癌诊断治疗指南版
- 扫黄打非知多少扫黄打非进课堂主题班会
- 课件:曝光三要素
- 2023蓝桥杯科学素养竞赛考试题库(含答案)
- 重症医学科质量持续改进PDCA案例-降低中心静脉导管相关血流感染千日感染率
- 中小学校长招聘考试试题
- (完整版)桥梁挂篮施工方案
- 律师发展与行业痛点分析
评论
0/150
提交评论