广东省佛山市佛山三中2025届高一数学第二学期期末调研模拟试题含解析_第1页
广东省佛山市佛山三中2025届高一数学第二学期期末调研模拟试题含解析_第2页
广东省佛山市佛山三中2025届高一数学第二学期期末调研模拟试题含解析_第3页
广东省佛山市佛山三中2025届高一数学第二学期期末调研模拟试题含解析_第4页
广东省佛山市佛山三中2025届高一数学第二学期期末调研模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省佛山市佛山三中2025届高一数学第二学期期末调研模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.以抛物线C的顶点为圆心的圆交C于A、B两点,交C的准线于D、E两点.已知|AB|=,|DE|=,则C的焦点到准线的距离为()A.2 B.4 C.6 D.82.设为数列的前项和,,则的值为()A. B. C. D.不确定3.三条线段的长分别为5,6,8,则用这三条线段A.能组成直角三角形 B.能组成锐角三角形C.能组成钝角三角形 D.不能组成三角形4.已知两条直线与两个平面,给出下列命题:①若,则;②若,则;③若,则;④若,则;其中正确的命题个数为A.1 B.2 C.3 D.45.若,则函数的最小值是()A. B. C. D.6.sin300°的值为A. B. C. D.7.若复数(是虚数单位)是纯虚数,则实数的值为()A. B. C. D.8.如果a<b<0,则下列不等式成立的是()A. B.a2<b2 C.a3<b3 D.ac2<bc29.执行如图所示的程序框图,若输入,则输出()A.13 B.15 C.40 D.4610.一枚骰子连续投两次,则两次向上点数均为1的概率是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若数列{an}满足a1=2,a12.把数列的所有数按照从大到小的原则写成如下数表:第行有个数,第行的第个数(从左数起)记为,则________.13.在数列an中,a1=2,a14.若关于的不等式的解集为,则__________15.如图,二面角等于,、是棱上两点,、分别在半平面、内,,,且,则的长等于______.16.已知,函数的最小值为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(1)求函数的反函数;(2)解方程:.18.为了解学生的学习情况,某学校在一次考试中随机抽取了20名学生的成绩,分成[50,60),[60,70),[70,80),[80,90),[90,100]五组,绘制了如图所示频率分布直方图.求:(Ⅰ)图中m的值;(II)估计全年级本次考试的平均分;(III)若从样本中随机抽取分数在[80,100]的学生两名,求所抽取两人至少有一人分数不低于90分的概率.19.在平面直角坐标系xOy中,已知点,,,.(1)①证明:;②证明:存在点P使得.并求出P的坐标;(2)过C点的直线将四边形ABCD分成周长相等的两部分,产生的另一个交点为E,求点E的坐标.20.已知数列中,..(1)写出、、;(2)猜想的表达式,并用数学归纳法证明.21.已知数列满足,,设.(1)求,,;(2)证明:数列是等比数列,并求数列和的通项公式.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

如图,设抛物线方程为,交轴于点,则,即点纵坐标为,则点横坐标为,即,由勾股定理知,,即,解得,即的焦点到准线的距离为4,故选B.【点睛】2、C【解析】

令,由求出的值,再令时,由得出,两式相减可推出数列是等比数列,求出该数列的公比,再利用等比数列求和公式可求出的值.【详解】当时,,得;当时,由得出,两式相减得,可得.所以,数列是以为首项,以为公比的等比数列,因此,.故选:C.【点睛】本题考查利用前项和求数列通项,同时也考查了等比数列求和,在递推公式中涉及与时,可利用公式求解出,也可以转化为来求解,考查推理能力与计算能力,属于中等题.3、C【解析】

先求最大角的余弦,再得到三角形是钝角三角形.【详解】设最大角为,所以,所以三角形是钝角三角形.故选C【点睛】本题主要考查余弦定理,意在考查学生对该知识的理解掌握水平和分析推理能力.4、A【解析】

结合线面平行定理和举例判断.【详解】若,则可能平行或异面,故①错误;若,则可能与的交线平行,故②错误;若,则,所以,故③正确;若,则可能平行,相交或异面,故④错误;故选A.【点睛】本题线面关系的判断,主要依据线面定理和举例排除.5、B【解析】

直接用均值不等式求最小值.【详解】当且仅当,即时,取等号.故选:B【点睛】本题考查利用均值不等式求函数最小值,属于基础题.6、B【解析】

利用诱导公式化简,再求出值为.【详解】因为,故选B.【点睛】本题考查诱导公式的应用,即终边相同角的三角函数值相等及.7、C【解析】,且是纯虚数,,故选C.8、C【解析】

根据a、b的范围,取特殊值带入判断即可.【详解】∵a<b<0,不妨令a=﹣2,b=﹣1,则,a2>b2所以A、B不成立,当c=0时,ac2=bc2所以D不成立,故选:C.【点睛】本题考查了不等式的性质,考查特殊值法进行排除的应用,属于基础题.9、A【解析】

模拟程序运行即可.【详解】程序运行循环时,变量值为,不满足;,不满足;,满足,结束循环,输出.故选A.【点睛】本题考查程序框图,考查循环结构.解题时可模拟程序运行,观察变量值的变化,判断是否符合循环条件即可.10、D【解析】

连续投两次骰子共有36种,求出满足情况的个数,即可求解.【详解】一枚骰子投一次,向上的点数有6种,则连续投两次骰子共有36种,两次向上点数均为1的有1种情况,概率为.故选:D.【点睛】本题考查古典概型的概率,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、2×【解析】

判断数列是等比数列,然后求出通项公式.【详解】数列{an}中,a可得数列是等比数列,等比为3,an故答案为:2×3【点睛】本题考查等比数列的判断以及通项公式的求法,考查计算能力.12、【解析】

第行有个数知每行数的个数成等比数列,要求,先要求出,就必须求出前行一共出现了多少个数,根据等比数列的求和公式可求,而由可知,每一行数的分母成等差数列,可求出,令,即可求出.【详解】由第行有个数,可知每一行数的个数成等比数列,首项是,公比是,所以,前行共有个数,所以,第行第一个数为,,因此,.故答案为:.【点睛】本题考查数列的性质和应用,解题时要注意数阵的应用,同时要找出数阵的规律,考查推理能力,属于中等题.13、2+【解析】

因为a1∴a∴=(=2+ln14、1【解析】

根据二次不等式和二次方程的关系,得到是方程的两根,由根与系数的关系得到的值.【详解】因为关于的不等式的解集为所以是方程的两根,,由根与系数的关系得,解得【点睛】本题考查一元二次不等式和一元二次方程之间的关系,根与系数之间的关系,属于简单题.15、1【解析】

由已知中二面角α﹣l﹣β等于110°,A、B是棱l上两点,AC、BD分别在半平面α、β内,AC⊥l,BD⊥l,且AB=AC=BD=1,由,结合向量数量积的运算,即可求出CD的长.【详解】∵A、B是棱l上两点,AC、BD分别在半平面α、β内,AC⊥l,BD⊥l,又∵二面角α﹣l﹣β的平面角θ等于110°,且AB=AC=BD=1,∴,60°,∴故答案为1.【点睛】本题考查的知识点是与二面角有关的立体几何综合题,其中利用,结合向量数量积的运算,是解答本题的关键.16、5【解析】

变形后利用基本不等式可得最小值.【详解】∵,∴4x-5>0,∴当且仅当时,取等号,即时,有最小值5【点睛】本题考查利用基本不等式求最值,凑出可利用基本不等式的形式是解决问题的关键,使用基本不等式时要注意“一正二定三相等”的法则.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】

(1)反解,然后交换的位置,写出原函数的值域即可得到结果;(2)代入原函数与反函数的解析式,解方程即可得到答案.【详解】(1)由得,得,因为,所以,所以.(2)由得2,所以,即,解得,所以,所以原方程的解集为.【点睛】本题考查了求反函数的解析式,考查了指数式与对数式的互化,属于中档题.18、(I)0.045;(II)75;(III)0.7【解析】

(Ⅰ)根据频率之和为1,结合题中数据,即可求出结果;(II)每组的中间值乘以该组频率,再求和,即可得出结果;(III)用列举法列举出总的基本事件,以及满足条件的基本事件,基本事件的个数比即为所求的概率.【详解】(Ⅰ)由题意可得:(Ⅱ)各组的频率分别为0.05,0.25,0.45,0.15,0.1,所以可估计全年级的平均分为;(Ⅲ)分数落在[80,90)的人数有3人,设为a,b,c,落在[90,100的人数有2人,设为A、B,则从中随机抽取两名的结果有{ab},(ac},{a4},(aB},{bc},(bA},(bB),{cA},{cB),{AB}共10种,其中至少有一人不低于90分的有7种,故概率为0.7.【点睛】本题主要考查由频率分布直方图求参数,以及求均值的问题,同时考查古典概型的问题,熟记古典概型的概率公式,以及均值的求法即可,属于常考题型.19、(1)①见解析;②见解析,;(2).【解析】

(1)①利用夹角公式可得;②由条件知点为四边形外接圆的圆心,根据,可得,四边形外接圆的圆心为的中点,然后求出点的坐标;(2)根据条件可得,然后设的坐标为,根据,可得的坐标.【详解】(1)①,,,,,,,,,,;②由知,点为四边形外接圆的圆心,,,,,四边形外接圆的圆心为的中点,点的坐标为;(2)由两点间的距离公式可得,,,,过点的直线将四边形分成周长相等的两部分,,设的坐标为,则,,,,点的坐标为.【点睛】本题考查向量的夹角公式、向量相等、向量的运算性质、两点间的距离公式等,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力.20、(1),,;(2)猜想,证明见解析.【解析】

(1)利用递推公式可计算出、、的值;(2)根据数列的前四项可猜想出,然后利用数学归纳法即可证明出猜想成立.【详解】(1),,则,,;(2)猜想,下面利用数学归纳法证明.假设当时成立,即,那么当时,,这说明当时,猜想也成立.由归纳原理可知,.【点睛】本题考查利用数列递推公式写出数列中的项,同时也考查了利用数学归纳法证

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论