版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省河津三中2025届数学高一下期末考试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列函数中,既是偶函数又在区间上单调递减的函数是()A. B. C. D.2.已知且为常数,圆,过圆内一点的直线与圆相交于两点,当弦最短时,直线的方程为,则的值为()A.2 B.3 C.4 D.53.一枚骰子连续投两次,则两次向上点数均为1的概率是()A. B. C. D.4.已知实数列-1,x,y,z,-2成等比数列,则xyz等于A.-4 B. C. D.5.已知,所在平面内一点P满足,则()A. B. C. D.6.在中,角,,所对的边分别为,,,,的平分线交于点,且,则的最小值为()A.8 B.9 C.10 D.77.如图,测量河对岸的塔高AB时可以选与塔底B在同一水平面内的两个测点C与D,测得,,CD=30,并在点C测得塔顶A的仰角为60°,则塔高AB等于A. B. C. D.8.设变量,满足约束条件,则目标函数的最大值为()A. B. C. D.9.已知,,下列不等式成立的是()A. B.C. D.10.《九章算术》中,将四个面都为直角三角形的三棱锥称之为鳖臑,若三棱锥为鳖臑,平面,三棱锥的四个顶点都在球的球面上,则球的表面积为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知,,则的值为.12.在一个不透明的布袋中,红色,黑色,白色的玻璃球共有40个,除颜色外其他完全相同,小明通过多次摸球试验后发现其中摸到红色球,黑色球的频率稳定在15%和45%,则口袋中白色球的个数可能是_________个.13.某校选修“营养与卫生”课程的学生中,高一年级有30名,高二年级有40名.现用分层抽样的方法从这70名学生中抽取一个样本,已知在高二年级的学生中抽取了8名,则在该校高一年级的学生中应抽取的人数为________.14.正六棱柱底面边长为10,高为15,则这个正六棱柱的体积是_____.15.设,则函数是__________函数(奇偶性).16.已知直线平分圆的周长,则实数________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.的内角的对边分别为.(1)求证:;(2)在边上取一点P,若.求证:.18.已知函数.(1)求的值;(2)若,求的取值范围.19.如图所示,在直三棱柱(侧面和底面互相垂直的三棱柱叫做直三棱柱)中,平面,,设的中点为D,.(1)求证:平面;(2)求证:.20.已知抛物线的焦点为,过的直线交轴正半轴于点,交抛物线于两点,其中点在第一象限.(Ⅰ)求证:以线段为直径的圆与轴相切;(Ⅱ)若,,,求的取值范围.21.在平面直角坐标中,圆与圆相交与两点.(I)求线段的长.(II)记圆与轴正半轴交于点,点在圆C上滑动,求面积最大时的直线的方程.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
依次分析选项的奇偶性和在区间上的单调性即可得到答案.【详解】因为是奇函数,故A选项错误,因为是非奇非偶函数,故D选项错误,因为是偶函数,由函数图像知,在区间上单调递增,故B选项错误,因为是偶函数,由函数图像知,在区间上单调递减,故C选项正确.故选:C.【点睛】本题主要考查了函数的奇偶性的判断,二次函数单调性的判断,属于基础题.2、B【解析】
由圆的方程求出圆心坐标与半径,结合题意,可得过圆心与点(1,2)的直线与直线2x﹣y=0垂直,再由斜率的关系列式求解.【详解】圆C:化简为圆心坐标为,半径为.如图,由题意可得,当弦最短时,过圆心与点(1,2)的直线与直线垂直.则,即a=1.故选:B.【点睛】本题考查直线与圆位置关系的应用,考查数形结合的解题思想方法与数学转化思想方法,是中档题.一般直线和圆的题很多情况下是利用数形结合来解决的,联立的时候较少;在求圆上的点到直线或者定点的距离时,一般是转化为圆心到直线或者圆心到定点的距离,再加减半径,分别得到最大值和最小值;涉及到圆的弦长或者切线长时,经常用到垂径定理.3、D【解析】
连续投两次骰子共有36种,求出满足情况的个数,即可求解.【详解】一枚骰子投一次,向上的点数有6种,则连续投两次骰子共有36种,两次向上点数均为1的有1种情况,概率为.故选:D.【点睛】本题考查古典概型的概率,属于基础题.4、C【解析】.5、D【解析】
由平面向量基本定理及单位向量可得点在的外角平分线上,且点在的外角平分线上,,,在中,由正弦定理得得解.【详解】因为所以,因为方向为外角平分线方向,所以点在的外角平分线上,同理,点在的外角平分线上,,,在中,由正弦定理得,故选:.【点睛】本题考查了平面向量基本定理及单位向量,考查向量的应用,意在考查学生对这些知识的理解掌握水平.6、B【解析】
根据三角形的面积公式,建立关于的关系式,结合基本不等式,利用1的代换,即可求解,得到答案.【详解】由题意,因为,的平分线交于点,且,所以,整理得,得,则,当且仅当,即,所以的最小值9,故选B.【点睛】本题主要考查了基本不等式的应用,其中合理利用1的代换,结合基本不等式求解是解答的关键,着重考查了推理与运算能力,属于基础题.7、D【解析】在中,由正弦定理得,解得在中,8、C【解析】
作出可行域,利用平移法即可求出.【详解】作出不等式组表示的平面区域,如图所示:当直线平移至经过直线与直线的交点时,取得最大值,.故选:C.【点睛】本题主要考查简单线性规划问题的解法应用,属于基础题.9、A【解析】
由作差法可判断出A、B选项中不等式的正误;由对数换底公式以及对数函数的单调性可判断出C选项中不等式的正误;利用指数函数的单调性可判断出D选项中不等式的正误.【详解】对于A选项中的不等式,,,,,,,,A选项正确;对于B选项中的不等式,,,,,,,B选项错误;对于C选项中的不等式,,,,,,,即,C选项错误;对于D选项中的不等式,,函数是递减函数,又,所以,D选项错误.故选A.【点睛】本题考查不等式正误的判断,常见的比较大小的方法有:(1)比较法;(2)中间值法;(3)函数单调性法;(4)不等式的性质.在比较大小时,可以结合不等式的结构选择合适的方法来比较,考查推理能力,属于中等题.10、C【解析】由题意,PA⊥面ABC,则为直角三角形,PA=3,AB=4,所以PB=5,又△ABC是直角三角形,所以∠ABC=90°,AB=4,AC=5所以BC=3,因为为直角三角形,经分析只能,故,三棱锥的外接球的圆心为PC的中点,所以则球的表面积为.故选C.二、填空题:本大题共6小题,每小题5分,共30分。11、3【解析】
,故答案为3.12、16【解析】
根据红色球和黑色球的频率稳定值,计算红色球和黑色球的个数,从而得到白色球的个数.【详解】根据概率是频率的稳定值的意义,红色球的个数为个;黑色球的个数为个;故白色球的个数为4个.故答案为:16.【点睛】本题考查概率和频率之间的关系:概率是频率的稳定值.13、6【解析】
利用分层抽样的定义求解.【详解】设从高一年级的学生中抽取x名,由分层抽样的知识可知,解得x=6.故答案为6.【点睛】本题主要考查分层抽样,意在考查学生对该知识的掌握水平和分析推理能力.14、【解析】
正六棱柱是底面为正六边形的直棱柱,利用计算可得结果.【详解】因为正六棱柱底面边长为10,所以其面积,所以体积.【点睛】本题考查正六棱柱的概念及其体积的计算,考查基本运算能力.15、偶【解析】
利用诱导公式将函数的解析式进行化简,即可判断出函数的奇偶性.【详解】,因此,函数为偶函数.故答案为:偶.【点睛】本题考查三角函数奇偶性的判断,解题的关键就是利用诱导公式对三角函数解析式进行化简,考查分析问题和解决问题的能力,属于基础题.16、1【解析】
由题得圆心在直线上,解方程即得解.【详解】由题得圆心(1,a)在直线上,所以.故答案为1【点睛】本题主要考查直线和圆的位置关系,意在考查学生对该知识的理解掌握水平,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)详见解析;(2)详见解析.【解析】
(1)余弦定理的证明其实在课本就直接给出过它向量方法的证明,通过,等向量模长相等就可,当然我们还可以通过坐标的运算完成(如方法二)(2)通过点P,将三角形分割,这种题中多注意几个相等(公共边相等,)我们可以得到相对应的等量关系,完成本题.【详解】(1)证法一:如图,即证法二:已知中所对边分别为,以为原点,所在直线为轴建立直角坐标系,则,所以(2)令,由余弦定理得:,因为所以所以所以【点睛】(1)向量既有大小又有方向.在几何中是一种很重要的工具,比如三角形中,三边有大小,角度问题我们可以转化为向量夹角相关,所以很容易想到向量方法.(2)解组合三角形问题,多注重图形中一些恒等关系比如边长、角度问题.18、(1);(2)【解析】
(1)将)化简为,代入从而求得结果.(2)由,得,从而确定的范围.【详解】(1)(2)由,得解得,,即的取值范围是【点睛】本题主要考查三角函数的化简求值,不等式的求解,意在考查学生的运算能力和分析能力,难度不大.19、(1)见解析;(2)见解析.【解析】
(1)由可证平面;(2)先证,再证,即可证明平面,即可得出.【详解】(1)∵三棱柱为直三棱柱,∴四边形为矩形,∴E为中点,又D点为中点,∴DE为的中位线,∴,又平面,平面,∴平面;(2)∵三棱柱为直三棱柱,∴平面ABC,∴,又∵,∴四边形为正方形,所以,∵平面,∴,和相交于C,∴平面,∴.【点睛】本题考查线面平行的证明,考查线面垂直的判定及性质,考查空间想象能力,属于常考题.20、(Ⅰ)证明见解析;(Ⅱ).【解析】
试题分析:(Ⅰ)题意实质上证明线段的中点到轴的距离等于线段长的一半,根据抛物线的定义设可证得;(Ⅱ)同样设,,把已知,用坐标表示出来,消去坐标及,得出与的关系,此时就可得出的取值范围.试题解析:(Ⅰ)由已知,设,则,圆心坐标为,圆心到轴的距离为,圆的半径为,所以,以线段为直径的圆与轴相切.(Ⅱ)解法一:设,由,,得,,所以,,由,得.又,,所以.代入,得,,整理得,代入,得,所以,因为,所以的取值范围是.解法二:设,,将代入,得,所以(*),由,,得,,所以,,,将代入(*)式,得,所以,.代入,得.因为,所以的取值范围是.考点:抛物线的定义,抛物线的焦点弦问题.21、(I);(II)或.【解析】
(I)先求得相交弦所在的直线方程,再求得圆的圆心到相交弦所在直线的距离,然后利用直线和圆相交所得弦长公式,计算出弦长.(II)先求得当时,取得最大值,根据两直线垂直时斜率
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 散客旅游合同范本在线查看
- 企业车辆交易协议书模板
- 2024体育赛事场地租赁合同
- 2024版土石方运输合同
- 农村个人购房合同范例
- 合伙协议书范例
- 如何签订借款合同避免风险
- 个人汽车买卖合同样本模板
- 2023年高考地理专题复习新题典题精练-洋流(原卷版)
- 致大海选择性必修中册 第四单元课件
- 服务质量、保证措施
- (必练)广东省军队文职(经济学)近年考试真题试题库(含答案)
- 含羞草天气课件
- 2024年安全生产知识竞赛考试题库及答案(共五套)
- 22《鸟的天堂》课件
- 农业灌溉装置市场环境与对策分析
- 新疆乌鲁木齐市第十一中学2024-2025学年八年级上学期期中道德与法治试卷
- 2024年江西省高考地理真题(原卷版)
- 部编版小学五年级上册道法课程纲要(知识清单)
- 经济法学-计分作业一(第1-4章权重25%)-国开-参考资料
- 山东省临沂市(2024年-2025年小学四年级语文)人教版期中考试(上学期)试卷及答案
评论
0/150
提交评论