广东省佛山市石门高级中学2025届高一下数学期末考试试题含解析_第1页
广东省佛山市石门高级中学2025届高一下数学期末考试试题含解析_第2页
广东省佛山市石门高级中学2025届高一下数学期末考试试题含解析_第3页
广东省佛山市石门高级中学2025届高一下数学期末考试试题含解析_第4页
广东省佛山市石门高级中学2025届高一下数学期末考试试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省佛山市石门高级中学2025届高一下数学期末考试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若,,则()A. B. C. D.2.在边长为1的等边三角形ABC中,D是AB的中点,E为线段AC上一动点,则的取值范围为()A. B. C. D.3.下列函数中,图象的一部分如图所示的是()A. B.C. D.4.设等差数列的前项和为,若,,则的值为()A. B. C. D.5.己知弧长的弧所对的圆心角为弧度,则这条弧所在的圆的半径为()A. B. C. D.6.函数的单调减区间为()A.(kπ﹣,kπ],(k∈Z) B.(kπ﹣,kπ],(k∈Z)C.(kπ﹣,kπ+],(k∈Z) D.(kπ+,kπ+],(k∈Z)7.在递增的等比数列an中,a4,a6是方程x2A.2 B.±2 C.12 D.18.在等差数列中,,则等于()A.5 B.6 C.7 D.89.等差数列中,若,则=()A.11 B.7 C.3 D.210.在中,,,分别是角,,的对边,且满足,那么的形状一定是()A.等腰三角形 B.直角三角形 C.等腰或直角三角形 D.等腰直角三角形二、填空题:本大题共6小题,每小题5分,共30分。11.某中学高一年级有学生1200人,高二年级有学生900人,高三年级有学生1500人,现按年级用分层抽样的方法从这三个年级的学生中抽取一个容量为720的样本进行某项研究,则应从高三年级学生中抽取_____人.12.某单位为了了解用电量度与气温之间的关系,随机统计了某天的用电量与当天气温.气温(℃)141286用电量(度)22263438由表中数据得回归直线方程中,据此预测当气温为5℃时,用电量的度数约为____.13.棱长为,各面都为等边三角形的四面体内有一点,由点向各面作垂线,垂线段的长度分别为,则=______.14.设满足约束条件,则的最小值为__________.15.平面四边形中,,则=_______.16.在中,若,,,则________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)求函数图象的对称轴方程;(2)若对于任意的,恒成立,求实数的取值范围.18.在锐角中,,,分别为内角,,所对的边,且满足.(1)求角的大小;(2)若,,求的面积.19.在中,角的对边分别为,已知(1)求;(2)若为锐角三角形,且边,求面积的取值范围.20.为了调查家庭的月收入与月储蓄的情况,某居民区的物业工作人员随机抽取该小区20个家庭,获得第个家庭的月收入(单位:千元)与月储蓄(单位:千元)的数据资料,计算得:,,,,.(1)求家庭的月储蓄对月收入的线性回归方程;(2)指出(1)中所求出方程的系数,并判断变量与之间是正相关还是负相关;(3)若该居民区某家庭月收入为9千元,预测该家庭的月储蓄.21.某中学从高三男生中随机抽取100名学生,将他们的身高数据进行整理,得到下侧的频率分布表.组号分组频率第1组[160,165)0.05第2组0.35第3组0.3第4组0.2第5组0.1合计1.00(Ⅰ)为了能对学生的体能做进一步了解,该校决定在第3,4,5组中用分层抽样的方法抽取6名学生进行体能测试,问第3,4,5组每组各应抽取多少名学生进行测试;(Ⅱ)在(Ⅰ)的前提下,学校决定在6名学生中随机抽取2名学生进行引体向上测试,求第3组中至少有一名学生被抽中的概率;(Ⅲ)试估计该中学高三年级男生身高的中位数位于第几组中,并说明理由.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

利用诱导公式得到的值,再由同角三角函数的平方关系,结合角的范围,即可得答案.【详解】∵,又,∴.故选:B.【点睛】本题考查诱导公式、同角三角函数的平方关系,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意符号问题.2、B【解析】

由题意,以点为坐标原点,方向为轴正方向,方向为轴正方向,建立平面直角坐标系,得到,,以及直线的方程,设出点E坐标,根据向量数量积,直接计算,即可得出结果.【详解】如图,以点为坐标原点,方向为轴正方向,方向为轴正方向,建立平面直角坐标系,因为等边三角形的边长为1,所以,,,,则直线的方程为,整理得,因为E为线段AC上一动点,设,,则,,所以,因为,所以在上单调递减,在上单调递增,所以的最小值为,最大值为.即的取值范围为.故选B【点睛】本题主要考查平面向量的数量积,利用建立坐标系的方法求解即可,属于常考题型.3、D【解析】

设图中对应三角函数最小正周期为T,从图象看出,T=,所以函数的最小正周期为π,函数应为y=向左平移了个单位,即=,选D.4、D【解析】

利用等差数列的前项和的性质可求的值.【详解】因为,所以,故,故选D.【点睛】一般地,如果为等差数列,为其前项和,则有性质:(1)若,则;(2)且;(3)且为等差数列;(4)为等差数列.5、D【解析】

利用弧长公式列出方程直接求解,即可得到答案.【详解】由题意,弧长的弧所对的圆心角为2弧度,则,解得,故选D.【点睛】本题主要考查了圆的半径的求法,考查弧长公式等基础知识,考查了推理能力与计算能力,是基础题.6、C【解析】

根据复合函数的单调性,得到函数的减区间,即为的增区间,且,根据三角函数的图象与性质,即可求解.【详解】由题意,函数在定义域上是减函数,根据复合函数的单调性,可得函数的减区间,即的增区间,且,则,得,则函数的单调递减区间为,故选C.【点睛】本题主要考查了对数函数及三角函数的图象与性质的应用,其中解答中熟记对数函数的性质,以及三角函数的图象与性质,根据复合函数的单调性进行判定是解答的关键,着重考查了推理与运算能力,属于基础题.7、A【解析】

先解方程求出a4,a6,然后根据等比数列满足【详解】∵a4,a6是方程x2-10x+16=0的两个根,∴a4+a6=10,a4【点睛】本题考查等比数列任意两项的关系,易错点是数列an为递增数列,那么又q>18、C【解析】

由数列为等差数列,当时,有,代入求解即可.【详解】解:因为数列为等差数列,又,则,又,则,故选:C.【点睛】本题考查了等差数列的性质,属基础题.9、A【解析】

根据和已知条件即可得到.【详解】等差数列中,故选A.【点睛】本题考查了等差数列的基本性质,属于基础题.10、C【解析】

由正弦定理,可得,.,或,或,即或,即三角形为等腰三角形或直角三角形,故选C.考点:1正弦定理;2正弦的二倍角公式.二、填空题:本大题共6小题,每小题5分,共30分。11、1.【解析】

先求得高三学生占的比例,再利用分层抽样的定义和方法,即可求解.【详解】由题意,高三学生占的比例为,所以应从高三年级学生中抽取的人数为.【点睛】本题主要考查了分层抽样的定义和方法,其中解答中熟记分层抽样的定义和抽取的方法是解答的关键,着重考查了运算与求解能力,属于基础题.12、1【解析】

由表格得,即样本中心点的坐标为,又因为样本中心点在回归方程上且,解得:,当时,,故答案为1.考点:回归方程【名师点睛】本题考查线性回归方程,属容易题.两个变量之间的关系,除了函数关系,还存在相关关系,通过建立回归直线方程,就可以根据其部分观测值,获得对这两个变量之间整体关系的了解.解题时根据所给的表格做出本组数据的样本中心点,根据样本中心点在线性回归直线上,利用待定系数法做出的值,现在方程是一个确定的方程,根据所给的的值,代入线性回归方程,预报要销售的件数.13、.【解析】

根据等积法可得∴14、-1【解析】

由约束条件作出可行域,由图得到最优解,求出最优解的坐标,数形结合得答案.【详解】由x,y满足约束条件作出可行域如图,由图可知,目标函数的最优解为A,联立,解得A(﹣1,1).∴z=3x﹣2y的最小值为﹣3×1﹣2×1=﹣1.故答案为:﹣1.【点睛】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.15、【解析】

先求出,再求出,再利用余弦定理求出AD得解.【详解】依题意得中,,故.在中,由正弦定理可知,,得.在中,因为,故.则.在中,由余弦定理可知,,即.得.【点睛】本题主要考查正弦定理余弦定理解三角形,意在考查学生对这些知识的理解掌握水平,属于中档题.16、2;【解析】

利用余弦定理可构造关于的方程,解方程求得结果.【详解】由余弦定理得:解得:或(舍)本题正确结果:【点睛】本题考查利用余弦定理解三角形,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】

(1)通过三角恒等变形,化简为的形式,方便我们去研究与其相关的任何问题;(2)恒成立,可转化,我们只需要求出最大值从而完成本题.【详解】(1)令得,所以的对称轴为(2)当时,,,因为,即恒成立故,解得【点睛】在研究三角函数相关的性质(值域、对称中心、对称轴、单调性……)我们都是将其化为(或者余弦、正切相对应)的形式,利用整体思想,我们能比较方便的去研究他们相关性质.18、(1);(2).【解析】

(1)利用正弦定理化简已知的等式,根据sinA不为0,可得出sinB的值,由B为锐角,利用特殊角的三角函数值,即可求出B的度数;(2)由b及cosB的值,利用余弦定理列出关于a与c的关系式,利用完全平方公式变形后,将a+c的值代入,求出ac的值,将a+c=5与ac=6联立,并根据a大于c,求出a与c的值,再由a,b及c的值,利用余弦定理求出cosA的值,将b,c及cosA的值代入即可求出值.【详解】(1),由正弦定理得,所以,因为三角形ABC为锐角三角形,所以.(2)由余弦定理得,,所以所以.19、(1);(2)【解析】

(1)利用正弦定理边化角,再利用和角的正弦公式化简即得B的值;(2)先根据已知求出,再求面积的取值范围.【详解】解:(1),即可得,∵∴∵∴∴由,可得;(2)若为锐角三角形,且,由余弦定理可得,由三角形为锐角三角形,可得且解得,可得面积【点睛】本题主要考查正弦定理余弦定理解三角形,考查三角形面积的取值范围的求法,意在考查学生对这些知识的理解掌握水平,属于基础题.20、(1);(2)正相关;(3)2.2千元.【解析】

(1)直接利用公式计算回归方程为:.(2)由(1),故正相关.(3)把代入得:.【详解】(1)∵,,样本中心点为:∴由公式得:把代入得:所求回归方程为:;(2)由(1)知,所求出方程的系数为:,,∵,∴与之间是正相关.(3)把代入得:(千元)即该居民区某家庭月收入为9千元时,预测该家庭的月储蓄为2.2千元.【点睛】本题考查了回归方程的计算和预测,意在考查学生的计算能力.21、(1)3人,2人,1人.(2)0.8.(3)第3组【解析】分析:(Ⅰ)由分层抽样方法可得第组:=人;第组:=人;第组:=人;(Ⅱ)利用列举法可得个人抽取两人共有中不同的结果,其中第组的两位同学至少有一位同学被选中的情况有种,利用古典概型概率公式可得结果;(Ⅲ)由前两组频率和为,中位数可得在第组.详解:(Ⅰ)因为第3,4,5组共有60名学生,所以利用分层抽样在60名学生中抽取6名学生,每组学生人数分别为:第3组:=3人;第4组:=2人;第5组:=1人.所以第3,4,5组分别抽取3人,2人,1人.(Ⅱ)设第3组3位同学为A1,A2,A3,第4组2位同学为B1,B2,第5组1位同学为C1,则从6位同学中抽两位同学的情况分别为:(A1,A2),(A1,A3),(A1,B1),(A1,B2),(A1,C1),(A2,A3),(A2,B1),(A2,B2),(A2,C1),(A3,B1),(A3,B2),(A3,C1),(B1,B2),(B1,C1),(B2,C1).共有15种.其中第4组的两位同学至少有一位同学被选中的情况分别为:(A1,A2),(A1,A3),(A1,B1),(A1,B2),(A1,C1),(A2,A3),(A2,B1),(A2,B2),(A2,C1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论