版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
内蒙古鄂尔多斯西部四旗2025届高一下数学期末学业水平测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.某几何体三视图如图所示,则该几何体的体积为()A. B. C. D.2.下列函数中,既是偶函数,又在上递增的函数的个数是().①;②;③;④向右平移后得到的函数.A. B. C. D.3.已知向量,与的夹角为,则()A.3 B.2 C. D.14.设,则下列结论正确的是()A. B. C. D.5.已知,表示两条不同的直线,表示平面,则下列说法正确的是()A.若,,则 B.若,,则C.若,,则 D.若,,则6.在中秋的促销活动中,某商场对9月14日9时到14时的销售额进行统计,其频率分布直方图如图所示,已知12时到14时的销售额为万元,则10时到11时的销售额为()A.万元 B.万元 C.万元 D.万元7.已知圆的圆心为(-2,1),其一条直径的两个端点恰好在两坐标轴上,则这个圆的方程是()A. B.C. D.8.单位圆中,的圆心角所对的弧长为()A. B. C. D.9.两圆和的位置关系是()A.相离 B.相交 C.内切 D.外切10.已知直线经过点,且倾斜角为,则直线的方程为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在中,已知,则下列四个不等式中,正确的不等式的序号为____________①②③④12.关于的不等式的解集是,则______.13.已知椭圆的右焦点为,过点作圆的切线,若两条切线互相垂直,则_____________.14.等差数列中,,,设为数列的前项和,则_________.15.定义为数列的均值,已知数列的均值,记数列的前项和是,若对于任意的正整数恒成立,则实数k的取值范围是________.16.在中,角、、所对的边为、、,若,,,则角________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知的三个内角、、的对边分别是、、,的面积,(Ⅰ)求角;(Ⅱ)若中,边上的高,求的值.18.已知椭圆(常数),点是上的动点,是右顶点,定点的坐标为.⑴若与重合,求的焦点坐标;⑵若,求的最大值与最小值;⑶若的最小值为,求的取值范围.19.已知是同一平面内的三个向量,其中为单位向量.(Ⅰ)若//,求的坐标;(Ⅱ)若与垂直,求与的夹角.20.PM2.5是指空气中直径小于或等于2.5微米的颗粒物(也称可入肺颗粒物).为了探究车流量与PM2.5的浓度是否相关,现采集到某城市周一至周五某一时间段车流量与PM2.5的数据如下表:时间周一周二周三周四周五车流量×(万辆)5051545758PM2.5的浓度(微克/立方米)6070747879(1)根据上表数据,用最小二乘法求出y关于x的线性回归方程;(2)若周六同一时间段的车流量是25万辆,试根据(1)求出的线性回归方程,预测此时PM2.5的浓度为多少(保留整数)?参考公式:由最小二乘法所得回归直线的方程是:,其中,21.设数列的前n项和为,已知.(Ⅰ)求通项;(Ⅱ)设,求数列的前n项和.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】试题分析:该几何体是正方体在两个角各挖去四分之一个圆柱,因此.故选B.考点:三视图,体积.2、B【解析】
将①②③④中的函数解析式化简,分析各函数的奇偶性及其在区间上的单调性,可得出结论.【详解】对于①中的函数,该函数为偶函数,当时,,该函数在区间上不单调;对于②中的函数,该函数为偶函数,且在区间上单调递减;对于③中的函数,该函数为偶函数,且在区间上单调递增;对于④,将函数向右平移后得到的函数为,该函数为奇函数,且当时,,则函数在区间上不单调.故选:B.【点睛】本题考查三角函数单调性与奇偶性的判断,同时也考查了三角函数的相位变换,熟悉正弦、余弦和正切函数的基本性质是判断的关键,考查推理能力,属于中等题.3、C【解析】
由向量的模公式以及数量积公式,即可得到本题答案.【详解】因为向量,与的夹角为,所以.故选:C【点睛】本题主要考查平面向量的模的公式以及数量积公式.4、B【解析】
利用不等式的性质,即可求解,得到答案.【详解】由题意知,根据不等式的性质,两边同乘,可得成立.故选:B.【点睛】本题主要考查了不等式的性质及其应用,其中解答中熟记不等式的基本性质是解答的关键,着重考查了推理与运算能力,属于基础题.5、A【解析】
根据线面垂直的判定与性质、线面平行的判定与性质依次判断各个选项可得结果.【详解】选项:由线面垂直的性质定理可知正确;选项:由线面垂直判定定理知,需垂直于内两条相交直线才能说明,错误;选项:若,则平行关系不成立,错误;选项:的位置关系可能是平行或异面,错误.故选:【点睛】本题考查空间中线面平行与垂直相关命题的辨析,关键是能够熟练掌握空间中直线与平面位置关系的判定与性质定理.6、C【解析】分析:先根据12时到14时的销售额为万元求出总的销售额,再求10时到11时的销售额.详解:设总的销售额为x,则.10时到11时的销售额的频率为1-0.1-0.4-0.25-0.1=0.15.所以10时到11时的销售额为.故答案为C.点睛:(1)本题主要考查频率分布直方图求概率、频数和总数,意在考查学生对这些基础知识的掌握水平.(2)在频率分布直方图中,所有小矩形的面积和为1,频率=.7、C【解析】设直径的两个端点分别A(a,2)、B(2,b),圆心C为点(-1,1),由中点坐标公式得解得a=-4,b=1.∴半径r=∴圆的方程是:(x+1)1+(y-1)1=5,即x1+y1+4x-1y=2.故选C.8、B【解析】
将转化为弧度,即可得出答案.【详解】,因此,单位圆中,的圆心角所对的弧长为.故选B.【点睛】本题考查角度与弧度的转化,同时也考查了弧长的计算,考查计算能力,属于基础题.9、B【解析】
由圆的方程可得两圆圆心坐标和半径;根据圆心距和半径之间的关系,即可判断出两圆的位置关系.【详解】由圆的方程可知,两圆圆心分别为:和;半径分别为:,则圆心距:两圆位置关系为:相交本题正确选项:【点睛】本题考查圆与圆位置关系的判定;关键是明确两圆位置关系的判定是根据圆心距与两圆半径之间的长度关系确定.10、C【解析】
根据倾斜角求得斜率,再根据点斜式写出直线方程,然后化为一般式.【详解】倾斜角为,斜率为,由点斜式得,即.故选C.【点睛】本小题主要考查倾斜角与斜率对应关系,考查直线的点斜式方程和一般式方程,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、②③【解析】
根据,分当和两种情况分类讨论,每一类中利用正、余弦函数的单调性判断,特别注意,当时,.【详解】当时,在上是增函数,因为,所以,因为在上是减函数,且,所以,当时,且,因为在上是减函数,所以,而,所以.故答案为:②③【点睛】本题主要考查了正弦函数与余弦函数的单调性在三角形中的应用,还考查了运算求解的能力,属于中档题.12、【解析】
利用二次不等式解集与二次方程根的关系,由二次不等式的解集得到二次方程的根,再利用根与系数的关系,得到和的值,得到答案.【详解】因为关于的不等式的解集是,所以关于的方程的解是,由根与系数的关系得,解得,所以.【点睛】本题考查二次不等式解集和二次方程根之间的关系,属于简单题.13、【解析】
首先分析直线与圆的位置关系,然后结合已知可判断四边形的形状,得出的比值,最后得到答案.【详解】设切点为,根据已知两切线垂直,四边形是正方形,,根据,可得.故填:.【点睛】本题考查了直线与圆的几何性质,以及椭圆的性质,考查了转化与化归的能力,属于基础题型.14、【解析】
由等差数列的性质可得出的值,然后利用等差数列的求和公式可求出的值.【详解】由等差数列的基本性质可得,因此,.故答案为:.【点睛】本题考查等差数列求和,同时也考查了等差数列基本性质的应用,考查计算能力,属于基础题.15、【解析】
因为,,从而求出,可得数列为等差数列,记数列为,从而将对任意的恒成立化为,,即可求得答案.【详解】,,故,,则,对也成立,,则,数列为等差数列,记数列为.故对任意的恒成立,可化为:,;即,解得,,故答案为:.【点睛】本题考查了根据递推公式求数列通项公式和数列的单调性,掌握判断数列前项和最大值的方法是解题关键,考查了分析能力和计算能力,属于中档题.16、.【解析】
利用余弦定理求出的值,结合角的取值范围得出角的值.【详解】由余弦定理得,,,故答案为.【点睛】本题考查余弦定理的应用和反三角函数,解题时要充分结合元素类型选择正弦定理和余弦定理解三角形,考查计算能力,属于中等题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)由面积公式推出,代入所给等式可得,求出角C的余弦值从而求得角C;(Ⅱ)首先由求出边c,再由面积公式代入相应值求出边b,利用余弦定理即可求出边a.【详解】(Ⅰ)由得①于是,即∴又,所以(Ⅱ),由得,将代入中得,解得.【点睛】本题考查余弦定理解三角形,三角形面积公式,属于基础题.18、(1)(2)(3)【解析】解:⑴,椭圆方程为,∴左、右焦点坐标为.⑵,椭圆方程为,设,则∴时;时.⑶设动点,则∵当时,取最小值,且,∴且解得.19、(Ⅰ)或(Ⅱ)【解析】
(Ⅰ)设,根据向量的模和共线向量的条件,列出方程组,即可求解.(Ⅱ)由,根据向量的运算求得,再利用向量的夹角公式,即可求解.【详解】(Ⅰ)设由题则有解得或,.(Ⅱ)由题即,.【点睛】本题主要考查了向量的坐标运算,共线向量的条件及向量的夹角公式的应用,其中解答中熟记向量的基本概念和运算公式,合理准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.20、(1);(2)37【解析】
(1)根据题中所给公式分别求出相关数据即可得解;(2)将代入(1)所得直线方程即可得解.【详解】(1),故y关于x的线性回归方程是:(2)当时,所以可以预测此时PM2.5的浓度约为37.【点睛】此题考查根据已知数据求回归直线的方程,根据公式直接求解,利用所得回归直线方程进行预测.21、(Ⅰ);(Ⅱ).【解析】试题分析:(Ⅰ)当时,根据,构造,利用,两式相减得到,然后验证,得到数列的通项公式;(Ⅱ)由上一问可知.根据零点分和讨论去绝对值,利用分组转化求数列的和.试题解析:(Ⅰ)因为,所以当时,,两式相减得:当时,,因为,得到,解得,,所以数列是首项,公比为5的等比数列,则;(Ⅱ)由题意知,,易知当时,;时
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 拔尖创新人才培养的评价与反馈机制
- (完整版)管理心理学
- 农村生活污水治理项目可行性研究报告
- 八年级生物下册 15.5 健康的生活方式教学实录 北京课改版
- 灵活使用数字设备(教学实录)2024-2025学年陕教版信息技术三年级上册
- 2023七年级数学下册 第8章 一元一次方程8.2 解一元一次不等式1不等式的解集教学实录 (新版)华东师大版
- 2024年高中语文 第12课 动物游戏之谜教学实录3 新人教版必修3
- 《算盘》(教学实录)-2024-2025学年四年级上册数学人教版
- Unit 4 Amazing Science Topic 2 Section B 教学实录 2024-2025学年仁爱科普版九年级英语上册
- 2023年燃气安装项目筹资方案
- 5.1 中国外交政策的形成与发展 课件高中政治统编版选择性必修一当代国际政治与经济
- 2024-2025学年九年级化学人教版上册检测试卷(1-4单元)
- 2024年大学试题(经济学)-流通经济学考试近5年真题集锦(频考类试题)带答案
- 博弈论完整版本
- DB34∕T 4179-2022 社区邻里中心建设与服务规范
- 《中国神话传说》阅读测试试题及答案
- 《马克思主义基本原理》学习通超星期末考试答案章节答案2024年
- 一例尿毒症患者股骨颈骨折的临床护理查房
- 2025中考语文名著阅读 《朝花夕拾》试题练习(单一题)(学生版+解析版)
- 高中二年级上学期数学《抛物线的简单几何性质(二)》教学课件
- 2024华北水利水电工程集团招聘20人历年(高频重点复习提升训练)共500题附带答案详解
评论
0/150
提交评论