![2025届安徽省蚌埠四校高一下数学期末检测试题含解析_第1页](http://file4.renrendoc.com/view2/M00/30/11/wKhkFmZ0hsiAXEq2AAHE43Pzfb4926.jpg)
![2025届安徽省蚌埠四校高一下数学期末检测试题含解析_第2页](http://file4.renrendoc.com/view2/M00/30/11/wKhkFmZ0hsiAXEq2AAHE43Pzfb49262.jpg)
![2025届安徽省蚌埠四校高一下数学期末检测试题含解析_第3页](http://file4.renrendoc.com/view2/M00/30/11/wKhkFmZ0hsiAXEq2AAHE43Pzfb49263.jpg)
![2025届安徽省蚌埠四校高一下数学期末检测试题含解析_第4页](http://file4.renrendoc.com/view2/M00/30/11/wKhkFmZ0hsiAXEq2AAHE43Pzfb49264.jpg)
![2025届安徽省蚌埠四校高一下数学期末检测试题含解析_第5页](http://file4.renrendoc.com/view2/M00/30/11/wKhkFmZ0hsiAXEq2AAHE43Pzfb49265.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届安徽省蚌埠四校高一下数学期末检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.一个几何体的三视图如图所示,则这个几何体的表面积为()A.13+5 B.11+5 C.2.在中,,BC边上的高等于,则A. B. C. D.3.设直线l1:3x+2ay-5=0,l2:3a-1x-ay-2=0,若l1与A.-16 B.0或4.已知为的三个内角的对边,,的面积为2,则的最小值为().A. B. C. D.5.如直线与平行但不重合,则的值为().A.或2 B.2 C. D.6.已知,,则()A.1 B.2 C. D.37.已知是两条不同的直线,是三个不同的平面,则下列命题正确的是()A.若,,则 B.若,,则C.若,,则 D.若,,则8.若向量,,则在方向上的投影为()A.-2 B.2 C. D.9.已知则的最小值是()A. B.4 C. D.510.在中,且,则等于()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.某校女子篮球队7名运动员身高(单位:cm)分布的茎叶图如图,已知记录的平均身高为175cm,但记录中有一名运动员身高的末位数字不清晰,如果把其末位数字记为x,那么x的值为________.12.______.13.已知数列是首项为,公差为的等差数列,若数列是等比数列,则___________.14.已知向量,若,则_______15.已知,向量的夹角为,则的最大值为_____.16.已知直线l在y轴上的截距为1,且垂直于直线,则的方程是____________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知向量,.(1)若,求的值.(2)记,在中,满足,求函数的取值范围.18.如图,边长为2的正方形中.(1)点是的中点,点是的中点,将、分别沿,折起,使,两点重合于点,求证:;(2)当时,将、分别沿,折起,使,两点重合于点,求三棱锥的体积.19.习主席说:“绿水青山就是金山银山”.某地相应号召,投入资金进行生态环境建设,并以此发展旅游产业,根据规划,2018年投入1000万元,以后每年投入将比上一年减少,本年度当地旅游业收入估计为500万元,由于该项建设对旅游业的促进作用,预计今后的旅游业收入每年会比上一年增加.(1)设年内(2018年为第一年)总投入为万元,旅游业总收入为万元,写出、的表达式;(2)至少到哪一年,旅游业的总收入才能超过总投入.(参考数据:,,)20.数列中,且满足.(1)求数列的通项公式;(2)设,求;⑶设,是否存在最大的整数,使得对任意,均有成立?若存在,求出的值;若不存在,请说明理由.21.已知等差数列的前项和为,且,.(1)求数列的通项公式;(2)若,求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
三视图可看成由一个长1宽2高1的长方体和以2和1为直角边的三角形为底面高为1的三棱柱组合而成.【详解】几何体可看成由一个长1宽2高1的长方体和以2和1为直角边的三角形为底面高为1的三棱柱组合而成S=【点睛】已知三视图,求原几何体的表面积或体积是高考必考内容,主要考查空间想象能力,需要熟练掌握常见的几何体的三视图,会识别出简单的组合体.2、D【解析】试题分析:设边上的高线为,则,所以.由正弦定理,知,即,解得,故选D.【考点】正弦定理【方法点拨】在平面几何图形中求相关的几何量时,需寻找各个三角形之间的联系,交叉使用公共条件,常常将所涉及到已知几何量与所求几何集中到某一个三角形,然后选用正弦定理与余弦定理求解.3、B【解析】
通过两条直线平行的关系,可建立关于a的方程,解方程求得结果。【详解】l1//解得:a=0或-本题正确选项:B【点睛】本题考察直线位置关系问题。关键是通过两直线平行,得到:A14、D【解析】
运用三角形面积公式和余弦定理,结合三角函数的辅助角公式和正弦型函数的值域最后可求出的最小值.【详解】因为,所以,即,令,可得,于是有,因此,即,所以的最小值为,故本题选D.【点睛】本题考查了余弦定理、三角形面积公式,考查了辅助角公式,考查了数学运算能力.5、C【解析】
两直线斜率相等,且截距不相等。【详解】解析:由题意得,,解得或2,经检验时两直线重合,故.故选C.【点睛】本题考查两直线平行,属于基础题.6、A【解析】
根据向量的坐标运算法则直接求解.【详解】因为,,所以,所以,故选:A.【点睛】本题考查向量的坐标运算,属于基础题.7、D【解析】
根据空间线、面的位置关系有关定理,对四个选项逐一分析排除,由此得出正确选项.【详解】对于A选项,直线有可能在平面内,故A选项错误.对于B选项,两个平面有可能相交,平行于它们的交线,故B选项错误.对于C选项,可能平行,故C选项错误.根据线面垂直的性质定理可知D选项正确.故选D.【点睛】本小题主要考查空间线、面位置关系的判断,属于基础题.8、A【解析】向量,,所以,||=5,所以在方向上的投影为=-2故选A9、C【解析】
由题意结合均值不等式的结论即可求得的最小值,注意等号成立的条件.【详解】由题意可得:,当且仅当时等号成立.即的最小值是.故选:C.【点睛】在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.10、A【解析】
在△ABC中,利用正弦定理与两角和的正弦化简已知可得,sin(A+C)=sinB,结合a>b,即可求得答案.【详解】在△ABC中,∵asinBcosC+csinBcosAb,∴由正弦定理得:sinAsinBcosC+sinCsinBcosAsinB,sinB≠0,∴sinAcosC+sinCcosA,∴sin(A+C),又A+B+C=π,∴sin(A+C)=sin(π﹣B)=sinB,又a>b,∴B.故选A.【点睛】本题考查两角和与差的正弦函数与正弦定理的应用,考查了大角对大边的性质,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、2【解析】
根据茎叶图的数据和平均数的计算公式,列出方程,即可求解,得到答案.【详解】由题意,可得,即,解得.【点睛】本题主要考查了茎叶图的认识和平均数的公式的应用,其中解答中根据茎叶图,准确的读取数据,再根据数据的平均数的计算公式,列出方程求解是解答的关键,着重考查了推理与运算能力,属于基础题.12、【解析】
先令,得到,两式作差,根据等比数列的求和公式,化简整理,即可得出结果.【详解】令,则,两式作差得:所以故答案为:【点睛】本题主要考查数列的求和,熟记错位相加法求数列的和即可,属于常考题型.13、或【解析】
由等比数列的定义得出,可得出,利用两角和与差的余弦公式化简可求得的值.【详解】由于数列是首项为,公差为的等差数列,则,,又数列是等比数列,则,即,即,即,整理得,即,可得,,因此,或.故答案为:或.【点睛】本题考查利用等差数列和等比数列的定义求参数,同时也涉及了两角和与差的余弦公式的化简计算,考查计算能力,属于中等题.14、【解析】
由题意利用两个向量垂直的性质,两个向量的数量积公式,求得的值.【详解】因为向量,若,∴,则.故答案为:1.【点睛】本题主要考查两个向量垂直的坐标运算,属于基础题.15、【解析】
将两边平方,化简后利用基本不等式求得的最大值.【详解】将两边平方并化简得,由基本不等式得,故,即,即,所以的最大值为.【点睛】本小题主要考查平面向量模的运算,考查利用基本不等式求最值,考查化归与转化的数学思想方法,属于中档题.16、;【解析】试题分析:设垂直于直线的直线为,因为直线在轴上的截距为,所以,所以直线的方程是.考点:两直线的垂直关系.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】
(1)求出数量积,由二倍角公式和两角和的正弦公式化简,求出,然后结合诱导公式和余弦的二倍角公式可求值;(2)应用两角和的正弦公式可求得,得有范围,由(1)的结论得,即其范围.【详解】(1)由题意,,.(2)由(1),由得,三角形中,∴,.则,,∴.【点睛】本题考查平面向量数量积的坐标表示,考查两角和正弦公式,二倍角公式,考查三角函数的性质.解题中利用三角公式化简变形是解题关键,本题属于中档题.18、(1)证明见解析;(2)【解析】
(1)折叠过程中,,保持不变,即,,由此可得线面垂直,从而有线线垂直;(2)由(1)知面,即是三棱锥的高,求出底面积可得体积.【详解】(1)证明:由,.可得:,,,面又面(2)解:在三棱锥中,,,面,由,,可得.【点睛】本题考查证明线线垂直,考查求棱锥的体积.立体几何中证明线线垂直,通常由线面垂直的性质定理给出,即先证线面垂直,而证线面垂直又必须证明线线垂直,注意线线垂直与线面垂直的转化.三棱锥中任何一个面都可以当作底面,因此一般寻找高易得的面为底面,常用换底法求体积.19、(1),;(2)2022年【解析】
(1)根据题意,知每年投入资金和旅游业收入是等比数列,根据等比数列的前n项和公式,即可求解;(2)根据(1)中解析式,列出不等式,令,化简不等式,即可求解.【详解】解:(1)2018年投入为1000万元,第年投入为万元,所以,年内的总投入为.2018年旅游业收入为500万元,第年旅游业收入为万元,所以,年内的旅游业总收入为.(2)设至少经讨年,旅游业的总收入才能超讨总投入,由此得,即,令,代入上式得,解得或(舍去),即,不等式两边取常用对数,,即.∴∴至少到2022年,旅游业的总收入才能超过总投入.【点睛】本题考查等比数列求和公式,转化法解指数不等式,考查数学建模思想方法,考查计算能力,属于中等题型.20、(1);(2)(3)7.【解析】
(1)由可得为等差数列,从而可得数列的通项公式;(2)先判断时数列的各项为正数,时数列各项为负数,分两种情况讨论分别利用等差数列求和公式求解即可;(3)求得利用裂项相消法求得,由可得结果.【详解】(1)由题意,,为等差数列,设公差为,由题意得,.(2)若时,时,,故.(3),若对任意成立,的最小值是,对任意成立,的最大整数值是7,即存在最大整数使对任意,均有【点睛】本题主要考查等差数列的通项公式与求和公式,以及裂项相消法求和,属于中档题.裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 黑龙江省哈尔滨市六校联考2024-2025学年高二上学期1月期末考试语文试题(含解析)
- 考研《教育史(040103)》考前强化练习试题库(含答案)
- 2025年陕西省职教高考《职测》核心考点必刷必练试题库(含答案)
- 2025年曲靖医学高等专科学校高职单招职业技能测试近5年常考版参考题库含答案解析
- 金庸小说知识竞赛考试题库及答案(含各题型)
- 2025高考物理一轮复习第35讲拆2.光学.含答案
- 10kV配电站房工程施工中的资源配置与协调
- 会议服务外包合同
- 执行项目经理聘任合同协议书范本
- 精装商铺租赁合同年
- 小学六年级数学上册《简便计算》练习题(310题-附答案)
- 地理标志培训课件
- 培训如何上好一堂课
- 人教版英语七年级上册阅读理解专项训练16篇(含答案)
- 死亡病例讨论模板
- 毕业旅游活动设计与实施方案
- 宜城安达特种水泥有限公司双寨子矿区铝土矿矿产资源开发利用与生态复绿方案
- 面向机器人柔顺操作的力位精准控制方法
- 七年级下册英语单词默写表直接打印
- 瓦斯防治八招培训课件
- 《他汀长期治疗》课件
评论
0/150
提交评论