




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省通海县三中2025届高一下数学期末教学质量检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.的值()A.小于0 B.大于0 C.等于0 D.不小于02.一个体积为的正三棱柱(底面为正三角形,且侧棱垂直于底面的棱柱)的三视图如图所示,则该三棱柱的侧视图的面积为()A. B.3 C. D.123.某个算法程序框图如图所示,如果最后输出的的值是25,那么图中空白处应填的是()A. B. C. D.4.已知数列的通项公式,前项和为,则关于数列、的极限,下面判断正确的是()A.数列的极限不存在,的极限存在B.数列的极限存在,的极限不存在C.数列、的极限均存在,但极限值不相等D.数列、的极限均存在,且极限值相等5.已知,则使得都成立的取值范围是().A. B. C. D.6.在平面坐标系中,是圆上的四段弧(如图),点P在其中一段上,角以Ox为始边,OP为终边,若,则P所在的圆弧最有可能的是()A. B. C. D.7.在钝角三角形ABC中,若B=45°,a=2,则边长cA.(1,2) B.(0,1)∪(8.已知正数、满足,则的最小值为()A. B. C. D.9.已知非零向量、,“函数为偶函数”是“”的()A.充分非必要条件 B.必要非充分条件C.充要条件 D.既非充分也非必要条件10.若实数满足,则的大小关系是:A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.等比数列的首项为,公比为,记,则数列的最大项是第___________项.12.给出下列五个命题:①函数的一条对称轴是;②函数的图象关于点(,0)对称;③正弦函数在第一象限为增函数;④若,则,其中;⑤函数的图像与直线有且仅有两个不同的交点,则的取值范围为.以上五个命题中正确的有(填写所有正确命题的序号)13.若,则=.14.已知,且这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则_______________.15.若正四棱锥的侧棱长为,侧面与底面所成的角是45°,则该正四棱锥的体积是________.16.已知点A(-a,0),B(a,0)(a>0),若圆(x-2)2+(y-2)2=2上存在点C三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知数列的前项和为,点在函数的图像上.(1)求数列的通项;(2)设数列,求数列的前项和.18.已知等比数列的各项为正数,为其前项的和,,.(Ⅰ)求数列的通项公式;(Ⅱ)设数列是首项为,公差为的等差数列,求数列的通项公式及其前项的和.19.已知向量,,.(1)若,求的值;(2)设,若恒成立,求的取值范围.20.已知,函数,.(1)若在上单调递增,求正数的最大值;(2)若函数在内恰有一个零点,求的取值范围.21.若不等式的解集是.(1)求的值;(2)当为何值时,的解集为.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
确定各个角的范围,由三角函数定义可确定正负.【详解】∵,∴,,,∴.故选:A.【点睛】本题考查各象限角三角函数的符号,掌握三角函数定义是解题关键.2、A【解析】
根据侧视图的宽为求出正三角形的边长为4,再根据体积求出正三棱柱的高,再求侧视图的面积。【详解】侧视图的宽即为俯视图的高,即三角形的边长为4,又侧视图的面积为:【点睛】理解:侧视图的宽即为俯视图的高,即可求解本题。3、B【解析】
分别依次写出每次循环所得答案,再与输出结果比较,得到答案.【详解】由程序框图可知,第一次循环后,,,;第二次循环后,,,;第三次循环后,,,;第四次循环后,,,;第五次循环后,,,此时,则图中空白处应填的是【点睛】本题主要考查循环结构由输出结果计算判断条件,难度不大.4、D【解析】
分别考虑与的极限,然后作比较.【详解】因为,又,所以数列、的极限均存在,且极限值相等,故选D.【点睛】本题考查数列的极限的是否存在的判断以及计算,难度一般.注意求解的极限时,若是分段数列求和的形式,一定要将多段数列均考虑到.5、B【解析】
先解出不等式的解集,得到当时,不等式的解集,最后求出它们的交集即可.【详解】因为,所以,因为,所以,要想使得都成立,所以取值范围是,故本题选B.【点睛】本题考查了一元二次不等式的解法,考查了不等式的性质应用,考查了数学运算能力.6、A【解析】
根据三角函数线的定义,分别进行判断排除即可得答案.【详解】若P在AB段,正弦小于正切,正切有可能小于余弦;若P在CD段,正切最大,则cosα<sinα<tanα;若P在EF段,正切,余弦为负值,正弦为正,tanα<cosα<sinα;若P在GH段,正切为正值,正弦和余弦为负值,cosα<sinα<tanα.∴P所在的圆弧最有可能的是.故选:A.【点睛】本题任意角的三角函数的应用,根据角的大小判断角的正弦、余弦、正切值的正负及大小,为基础题.7、D【解析】试题分析:解法一:,由三角形正弦定理诱导公式有,利用三角恒等公式能够得到,当A为锐角时,0∘<A<45∘,,即,当A为钝角时,90∘<A<135∘,,综上所述,;解法二:利用图形,如图,,,当点A(D)在线段BE上时(不含端点B,E),为钝角,此时;当点A在线段EF上时,为锐角三角形或直角三角形;当点A在射线FG(不含端点F)上时,为钝角,此时,所以c的取值范围为.考点:解三角形.【思路点睛】解三角形需要灵活运用正余弦定理以及三角形的恒等变形,在解答本题时,利用三角形内角和,将两角化作一角,再利用正弦定理即可列出边长c与角A的关系式,根据角A的取值范围即可求出c的范围,本题亦可利用物理学中力的合成,合力的大小来确定c的大小,正如解法二所述.8、B【解析】
由得,再将代数式与相乘,利用基本不等式可求出的最小值.【详解】,所以,,则,所以,,当且仅当,即当时,等号成立,因此,的最小值为,故选.【点睛】本题考查利用基本不等式求最值,对代数式进行合理配凑,是解决本题的关键,属于中等题.9、C【解析】
根据,求出向量的关系,再利用必要条件和充分条件的定义,即可判定,得到答案.【详解】由题意,函数,又为偶函数,所以,则,即,可得,所以,若,则,所以,则,所以函数是偶函数,所以“函数为偶函数”是“”的充要条件.故选C.【点睛】本题主要考查了向量的数量积的运算,函数奇偶性的定义及其判定,以及充分条件和必要条件的判定,着重考查了推理与运算能力,属于基础题.10、D【解析】分析:先解不等式,再根据不等式性质确定的大小关系.详解:因为,所以,所以选D.点睛:本题考查一元二次不等式解法以及不等式性质,考查基本求解能力与运用性质解决问题能力.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
求得,则可将问题转化为求使得最大且使得为偶数的正整数的值,利用二次函数的基本性质求解即可.【详解】由等比数列的通项公式可得,,则问题转化为求使得最大且使得为偶数的正整数的值,,当时,取得最大值,此时为偶数.因此,的最大项是第项.故答案为:.【点睛】本题考查等比数列前项积最值的计算,将问题进行转化是解题的关键,考查分析问题和解决问题的能力,属于中等题.12、①②⑤【解析】试题分析:①将代入可得函数最大值,为函数对称轴;②函数的图象关于点对称,包括点;③,③错误;④利用诱导公式,可得不同于的表达式;⑤对进行讨论,利用正弦函数图象,得出函数与直线仅有有两个不同的交点,则.故本题答案应填①②⑤.考点:三角函数的性质.【知识点睛】本题主要考查三角函数的图象性质.对于和的最小正周期为.若为偶函数,则当时函数取得最值,若为奇函数,则当时,.若要求的对称轴,只要令,求.若要求的对称中心的横坐标,只要令即可.13、【解析】.14、5【解析】
试题分析:由题意得,为等差数列时,一定为等差中项,即,为等比数列时,-2为等比中项,即,所以.考点:等差,等比数列的性质15、【解析】
过棱锥顶点作,平面,则为的中点,为正方形的中心,连结,设正四棱锥的底面长为,根据已知求出a=2,SO=1,再求该正四棱锥的体积.【详解】过棱锥顶点作,平面,则为的中点,为正方形的中心,连结,则为侧面与底面所成角的平面角,即,设正四棱锥的底面长为,则,所以,在中,∵∴,解得,∴∴棱锥的体积.故答案为【点睛】本题主要考查空间线面角的计算,考查棱锥体积的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.16、3【解析】
利用参数方程假设C点坐标,表示出AC和BC,利用AC⋅BC=0可得到a【详解】设C∴∵∠ACB=90°∴∴当sinα+∴0<a≤3本题正确结果:3【点睛】本题考查圆中参数范围求解的问题,关键是能够利用圆的参数方程,利用向量数量积及三角函数关系求得最值.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),(2)【解析】
(1)把点带入即可(2)根据(1)的结果利用错位相减即可。【详解】(1)把点带入得,则时,时,经验证,也满足,所以(2)由(1)得,所以则①②①②得【点睛】本题主要考查了数列通项的求法,以及数列前项和的方法。求数列通项常用的方法有:累加法、累乘法、定义法、配凑法等。求数列前项和常用的方法有:错位相减、裂项相消、公式法、分组求和等。属于中等题。18、(Ⅰ)(Ⅱ),【解析】
(Ⅰ)设正项等比数列的公比为且,由已知列式求得首项与公比,则数列的通项公式可求;(Ⅱ)由已知求得,再由数列的分组求和即可.【详解】(Ⅰ)由题意知,等比数列的公比,且,所以,解得,或(舍去),则所求数列的通项公式为.(Ⅱ)由题意得,故【点睛】本题主要考查等差数列与等比数列的通项公式及前项和公式的应用,同时考查了待定系数法求数列的通项公式和分组求和法求数列的和.19、(1);(2).【解析】
(1)由,转化为,利用弦化切的思想得出的值,从而求出的值;(2)由,转化为,然后利用平面向量数量积的坐标运算律和辅助角公式与函数的解析式进行化简,并求出在区间的最大值,即可得出实数的取值范围.【详解】(1)∵,且,,,∴,即,又∵,∴;(2)易知,,∵,∴,,当时,,取得最大值:,又恒成立,即,故.【点睛】本题考查平面向量数量积的坐标运算,考查三角函数的最值,在求解含参函数的不等式恒成立问题,可以利用参变量分离法,转化为函数的最值来求解,考查转化与化归数学思想,考查计算能力,属于中等题.20、(1)(2)【解析】
(1)求出的单调递增区间,令,得,可知区间,即可求出正数的最大值;(2)令,当时,,可将问题转化为在的零点问题,分类讨论即可求出答案.【详解】解:(1)由,得,.因为在上单调递增,令,得时单调递增,所以解得,可得正数的最大值为.(2),设,当时,.它的图形如图所示.又,则,,令,则函数在内恰有一个零点,可知在内最多一个零点.①当0为的零点时,显然不成立;②当为的零点时,由,得,把代入中,得,解得,,不符合题意.③当零点在区间时,若,得,此时零点为1,即,由的图象可知不符合题意;若,即,设的两根分别为,,由,且抛物线的对称轴为,则两根同时为正,要使在内恰有一个零点,则一个根在内,另一个根在内,所以解得.综上,的取值范围为.【点睛】本题考查了三
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030中国地理信息行业市场深度调研及前景趋势与投资研究报告
- 2025-2030中国图书馆和档案馆行业市场发展趋势与前景展望战略研究报告
- 2025-2030中国商用车LED酒吧灯行业市场发展趋势与前景展望战略研究报告
- 2025-2030中国印刷碳粉行业市场发展趋势与前景展望战略研究报告
- 2025-2030中国化工废料行业市场发展分析及发展趋势与投资战略研究报告
- 2025-2030中国加热炉加热盘管行业市场发展趋势与前景展望战略研究报告
- 2025-2030中国刺猬饲料行业市场发展趋势与前景展望战略研究报告
- 2025-2030中国切割气囊导管行业市场发展趋势与前景展望战略研究报告
- 2025-2030中国冷冻和熟食行业市场发展趋势与前景展望战略研究报告
- 2025-2030中国农林装备行业市场发展趋势与前景展望战略研究报告
- 书法报名合作合同标准文本
- 宠物鲜食知识培训课件
- 2025届广东省佛山市高三上学期一模生物试题含答案
- 2025年广州市高三一模高考政治模拟试卷试题(答案详解)
- 履带吊安装与拆卸专项监理细则
- 通信冬雨季施工方案
- 血透患者如何预防高血钾
- 室外云台摄像机施工方案
- 2025年3月版安全环境职业健康法律法规标准文件清单
- 2025年甘肃华亭煤业集团有限责任公司招聘笔试参考题库含答案解析
- 2025河南中烟漯河卷烟厂招聘7人易考易错模拟试题(共500题)试卷后附参考答案
评论
0/150
提交评论