![浙江省杭州市下学期高三2月开学模拟(网络考试)新高考数学试题_第1页](http://file4.renrendoc.com/view5/M00/16/31/wKhkGGZzi-uAJpveAAHypzuE1wY308.jpg)
![浙江省杭州市下学期高三2月开学模拟(网络考试)新高考数学试题_第2页](http://file4.renrendoc.com/view5/M00/16/31/wKhkGGZzi-uAJpveAAHypzuE1wY3082.jpg)
![浙江省杭州市下学期高三2月开学模拟(网络考试)新高考数学试题_第3页](http://file4.renrendoc.com/view5/M00/16/31/wKhkGGZzi-uAJpveAAHypzuE1wY3083.jpg)
![浙江省杭州市下学期高三2月开学模拟(网络考试)新高考数学试题_第4页](http://file4.renrendoc.com/view5/M00/16/31/wKhkGGZzi-uAJpveAAHypzuE1wY3084.jpg)
![浙江省杭州市下学期高三2月开学模拟(网络考试)新高考数学试题_第5页](http://file4.renrendoc.com/view5/M00/16/31/wKhkGGZzi-uAJpveAAHypzuE1wY3085.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省杭州市下学期高三2月开学模拟(网络考试)新高考数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知实数,则下列说法正确的是()A. B.C. D.2.如图所示,用一边长为的正方形硬纸,按各边中点垂直折起四个小三角形,做成一个蛋巢,将体积为的鸡蛋(视为球体)放入其中,蛋巢形状保持不变,则鸡蛋(球体)离蛋巢底面的最短距离为()A. B.C. D.3.已知点为双曲线的右焦点,直线与双曲线交于A,B两点,若,则的面积为()A. B. C. D.4.已知,,是平面内三个单位向量,若,则的最小值()A. B. C. D.55.已知函数,若函数的极大值点从小到大依次记为,并记相应的极大值为,则的值为()A. B. C. D.6.已知定义在R上的函数(m为实数)为偶函数,记,,则a,b,c的大小关系为()A. B. C. D.7.已知是圆心为坐标原点,半径为1的圆上的任意一点,将射线绕点逆时针旋转到交圆于点,则的最大值为()A.3 B.2 C. D.8.一个几何体的三视图如图所示,则该几何体的体积为()A. B.C. D.9.在声学中,声强级(单位:)由公式给出,其中为声强(单位:).,,那么()A. B. C. D.10.阅读下面的程序框图,运行相应的程序,程序运行输出的结果是()A.1.1 B.1 C.2.9 D.2.811.函数且的图象是()A. B.C. D.12.过椭圆的左焦点的直线过的上顶点,且与椭圆相交于另一点,点在轴上的射影为,若,是坐标原点,则椭圆的离心率为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知等差数列的前n项和为,,,则=_______.14.二项式的展开式的各项系数之和为_____,含项的系数为_____.15.双曲线的左右顶点为,以为直径作圆,为双曲线右支上不同于顶点的任一点,连接交圆于点,设直线的斜率分别为,若,则_____.16.已知的展开式中项的系数与项的系数分别为135与,则展开式所有项系数之和为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在直三棱柱中,分别是中点,且,.求证:平面;求点到平面的距离.18.(12分)已知椭圆,上顶点为,离心率为,直线交轴于点,交椭圆于,两点,直线,分别交轴于点,.(Ⅰ)求椭圆的方程;(Ⅱ)求证:为定值.19.(12分)已知函数.(1)当a=2时,求不等式的解集;(2)设函数.当时,,求的取值范围.20.(12分)如图,设椭圆:,长轴的右端点与抛物线:的焦点重合,且椭圆的离心率是.(Ⅰ)求椭圆的标准方程;(Ⅱ)过作直线交抛物线于,两点,过且与直线垂直的直线交椭圆于另一点,求面积的最小值,以及取到最小值时直线的方程.21.(12分)已知直线是曲线的切线.(1)求函数的解析式,(2)若,证明:对于任意,有且仅有一个零点.22.(10分)已知三棱锥中侧面与底面都是边长为2的等边三角形,且面面,分别为线段的中点.为线段上的点,且.(1)证明:为线段的中点;(2)求二面角的余弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
利用不等式性质可判断,利用对数函数和指数函数的单调性判断.【详解】解:对于实数,,不成立对于不成立.对于.利用对数函数单调递增性质,即可得出.对于指数函数单调递减性质,因此不成立.故选:.【点睛】利用不等式性质比较大小.要注意不等式性质成立的前提条件.解决此类问题除根据不等式的性质求解外,还经常采用特殊值验证的方法.2、D【解析】因为蛋巢的底面是边长为的正方形,所以过四个顶点截鸡蛋所得的截面圆的直径为,又因为鸡蛋的体积为,所以球的半径为,所以球心到截面的距离,而截面到球体最低点距离为,而蛋巢的高度为,故球体到蛋巢底面的最短距离为.点睛:本题主要考查折叠问题,考查球体有关的知识.在解答过程中,如果遇到球体或者圆锥等几何体的内接或外接几何体的问题时,可以采用轴截面的方法来处理.也就是画出题目通过球心和最低点的截面,然后利用弦长和勾股定理来解决.球的表面积公式和体积公式是需要熟记的.3、D【解析】
设双曲线C的左焦点为,连接,由对称性可知四边形是平行四边形,设,得,求出的值,即得解.【详解】设双曲线C的左焦点为,连接,由对称性可知四边形是平行四边形,所以,.设,则,又.故,所以.故选:D【点睛】本题主要考查双曲线的简单几何性质,考查余弦定理解三角形和三角形面积的计算,意在考查学生对这些知识的理解掌握水平.4、A【解析】
由于,且为单位向量,所以可令,,再设出单位向量的坐标,再将坐标代入中,利用两点间的距离的几何意义可求出结果.【详解】解:设,,,则,从而,等号可取到.故选:A【点睛】此题考查的是平面向量的坐标、模的运算,利用整体代换,再结合距离公式求解,属于难题.5、C【解析】
对此分段函数的第一部分进行求导分析可知,当时有极大值,而后一部分是前一部分的定义域的循环,而值域则是每一次前面两个单位长度定义域的值域的2倍,故此得到极大值点的通项公式,且相应极大值,分组求和即得【详解】当时,,显然当时有,,∴经单调性分析知为的第一个极值点又∵时,∴,,,…,均为其极值点∵函数不能在端点处取得极值∴,,∴对应极值,,∴故选:C【点睛】本题考查基本函数极值的求解,从函数表达式中抽离出相应的等差数列和等比数列,最后分组求和,要求学生对数列和函数的熟悉程度高,为中档题6、B【解析】
根据f(x)为偶函数便可求出m=0,从而f(x)=﹣1,根据此函数的奇偶性与单调性即可作出判断.【详解】解:∵f(x)为偶函数;∴f(﹣x)=f(x);∴﹣1=﹣1;∴|﹣x﹣m|=|x﹣m|;(﹣x﹣m)2=(x﹣m)2;∴mx=0;∴m=0;∴f(x)=﹣1;∴f(x)在[0,+∞)上单调递增,并且a=f(||)=f(),b=f(),c=f(2);∵0<<2<;∴a<c<b.故选B.【点睛】本题考查偶函数的定义,指数函数的单调性,对于偶函数比较函数值大小的方法就是将自变量的值变到区间[0,+∞)上,根据单调性去比较函数值大小.7、C【解析】
设射线OA与x轴正向所成的角为,由三角函数的定义得,,,利用辅助角公式计算即可.【详解】设射线OA与x轴正向所成的角为,由已知,,,所以,当时,取得等号.故选:C.【点睛】本题考查正弦型函数的最值问题,涉及到三角函数的定义、辅助角公式等知识,是一道容易题.8、A【解析】
根据题意,可得几何体,利用体积计算即可.【详解】由题意,该几何体如图所示:该几何体的体积.故选:A.【点睛】本题考查了常见几何体的三视图和体积计算,属于基础题.9、D【解析】
由得,分别算出和的值,从而得到的值.【详解】∵,∴,∴,当时,,∴,当时,,∴,∴,故选:D.【点睛】本小题主要考查对数运算,属于基础题.10、C【解析】
根据程序框图的模拟过程,写出每执行一次的运行结果,属于基础题.【详解】初始值,第一次循环:,;第二次循环:,;第三次循环:,;第四次循环:,;第五次循环:,;第六次循环:,;第七次循环:,;第九次循环:,;第十次循环:,;所以输出.故选:C【点睛】本题考查了循环结构的程序框图的读取以及运行结果,属于基础题.11、B【解析】
先判断函数的奇偶性,再取特殊值,利用零点存在性定理判断函数零点分布情况,即可得解.【详解】由题可知定义域为,,是偶函数,关于轴对称,排除C,D.又,,在必有零点,排除A.故选:B.【点睛】本题考查了函数图象的判断,考查了函数的性质,属于中档题.12、D【解析】
求得点的坐标,由,得出,利用向量的坐标运算得出点的坐标,代入椭圆的方程,可得出关于、、的齐次等式,进而可求得椭圆的离心率.【详解】由题意可得、.由,得,则,即.而,所以,所以点.因为点在椭圆上,则,整理可得,所以,所以.即椭圆的离心率为故选:D.【点睛】本题考查椭圆离心率的求解,解答的关键就是要得出、、的齐次等式,充分利用点在椭圆上这一条件,围绕求点的坐标来求解,考查计算能力,属于中等题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
利用求出公差,结合等差数列的通项公式可求.【详解】设公差为,因为,所以,即.所以.故答案为:【点睛】本题主要考查等差数列通项公式的求解,利用等差数列的基本量是求解这类问题的通性通法,侧重考查数学运算的核心素养.14、【解析】
将代入二项式可得展开式各项系数之和,写出二项展开式通项,令的指数为,求出参数的值,代入通项即可得出项的系数.【详解】将代入二项式可得展开式各项系数和为.二项式的展开式通项为,令,解得,因此,展开式中含项的系数为.故答案为:;.【点睛】本题考查了二项式定理及二项式展开式通项公式,属基础题.15、【解析】
根据双曲线上的点的坐标关系得,交圆于点,所以,建立等式,两式作商即可得解.【详解】设,交圆于点,所以易知:即.故答案为:【点睛】此题考查根据双曲线上的点的坐标关系求解斜率关系,涉及双曲线中的部分定值结论,若能熟记常见二级结论,此题可以简化计算.16、64【解析】
由题意先求得的值,再令求出展开式中所有项的系数和.【详解】的展开式中项的系数与项的系数分别为135与,,,由两式可组成方程组,解得或,令,求得展开式中所有的系数之和为.故答案为:64【点睛】本题考查了二项式定理,考查了赋值法求多项式展开式的系数和,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)详见解析;(2).【解析】
(1)利用线面垂直的判定定理和性质定理即可证明;(2)取中点为,则,证得平面,利用等体积法求解即可.【详解】(1)因为,,,是的中点,,为直三棱柱,所以平面,因为为中点,所以平面,,又,平面(2),又分别是中点,.由(1)知,,又平面,取中点为,连接如图,则,平面,设点到平面的距离为,由,得,即,解得,点到平面的距离为.【点睛】本题考查线面垂直的判定定理和性质定理、等体积法求点到面的距离;考查逻辑推理能力和运算求解能力;熟练掌握线面垂直的判定定理和性质定理是求解本题的关键;属于中档题.18、(Ⅰ);(Ⅱ),证明见解析.【解析】
(Ⅰ)根据题意列出关于,,的方程组,解出,,的值,即可得到椭圆的方程;(Ⅱ)设点,,点,,易求直线的方程为:,令得,,同理可得,所以,联立直线与椭圆方程,利用韦达定理代入上式,化简即可得到.【详解】(Ⅰ)解:由题意可知:,解得,椭圆的方程为:;(Ⅱ)证:设点,,点,,联立方程,消去得:,,①,点,,,直线的方程为:,令得,,,,同理可得,,,把①式代入上式得:,为定值.【点睛】本题主要考查直线与椭圆的位置关系、定值问题的求解;关键是能够通过直线与椭圆联立得到韦达定理的形式,利用韦达定理化简三角形面积得到定值;考查计算能力与推理能力,属于中档题.19、(1);(2).【解析】试题分析:(1)当时;(2)由等价于,解之得.试题解析:(1)当时,.解不等式,得.因此,的解集为.(2)当时,,当时等号成立,所以当时,等价于.①当时,①等价于,无解.当时,①等价于,解得.所以的取值范围是.考点:不等式选讲.20、(Ⅰ);(Ⅱ)面积的最小值为9,.【解析】
(Ⅰ)由已知求出抛物线的焦点坐标即得椭圆中的,再由离心率可求得,从而得值,得标准方程;(Ⅱ)设直线方程为,设,把直线方程代入抛物线方程,化为的一元二次方程,由韦达定理得,由弦长公式得,同理求得点的横坐标,于是可得,将面积表示为参数的函数,利用导数可求得最大值.【详解】(Ⅰ)∵椭圆:,长轴的右端点与抛物线:的焦点重合,∴,又∵椭圆的离心率是,∴,,∴椭圆的标准方程为.(Ⅱ)过点的直线的方程设为,设,,联立得,∴,,∴.过且与直线垂直的直线设为,联立得,∴,故,∴,面积.令,则,,令,则,即时,面积最小,即当时,面积的最小值为9,此时直线的方程为.【点睛】本题考查椭圆方程的求解,抛物线中弦长的求解,涉及三角形面积范围问题,利用导数求函数的最值问题,属综合困难题.21、(1)(2)证明见解析【解析】
(1)对函数求导,并设切点,利用点既在曲线上、又在切线上,列出方程组,解得,即可得答案;(2)当x充分小时,当x充分大时,可得至少有一个零点.再证明零点的唯一性,即对函数求导得,对分和两种情况讨论,即可得答案.【详解】(1)根据题意,,设直线与曲线相切于点.根据题意,可得,解之得,所以.(2)由(1)可知,则当x充分小时,当x充分大时,∴至少有一个零点.∵,①若,则,在上单调递增,∴有唯一零点.②若令,得有两个极值点,∵,∴,∴.∴在上单调递增,在上单调递减,在上单调递增.∴极大值为.,又,∴在(0,16)上单调递增,∴,∴有唯一零点.综上可知,对于任意,有且仅有一个零点.【点睛】本题考查导数的几何意义的运用、利用导数证明函数的零点个数,考查函数与方程思想、转化与化归思想、分类讨论思想,考查逻辑推理能力和运算求解能力,求解时注意零点存在定理的运用.22、(1)见解析;(2)【解析】
(1)设为中点,连结,先证明,可证得,假设不
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 感恩老师发言稿14篇
- 安全主题教育活动方案
- 汽车租赁服务投标方案(技术标)
- 连云港做实“一带一路交汇点”建设的对策思考
- 公司财务知识分享
- 基于生物信息学探索妊娠期糖尿病与尿苷代谢相关的关键基因
- 《骆驼祥子》 上课课件
- 二零二五版企业向个人发放汽车贷款合同示例3篇
- 科创孵化器项目融资报告
- 建立强大的医院管理团队
- 《招标投标法》考试题库200题(含答案)
- 河南退役军人专升本计算机真题答案
- 湖南省长沙市2024-2025学年高一数学上学期期末考试试卷
- 船舶行业维修保养合同
- 2025年全国高考体育单招考试政治模拟试卷试题(含答案详解)
- 驾驶证学法减分(学法免分)试题和答案(50题完整版)1650
- 2024年林地使用权转让协议书
- 物流有限公司安全生产专项整治三年行动实施方案全国安全生产专项整治三年行动计划
- 小学数学五年级上册奥数应用题100道(含答案)
- 2025届江苏省13市高三最后一卷生物试卷含解析
- 2023年汉中市人民政府国有资产监督管理委员会公务员考试《行政职业能力测验》历年真题及详解
评论
0/150
提交评论