版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省陇川县民族中学2025届高一下数学期末预测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知向量a=(2,1),a⋅b=10,A.5 B.10 C.5 D.252.一空间几何体的三视图如下图所示,则该几何体的体积为()A.1 B.3 C.6 D.23.为了治疗某种疾病,研制了一种新药,为确定该药的疗效,生物实验室有只小动物,其中有3只注射过该新药,若从这只小动物中随机取出只检测,则恰有只注射过该新药的概率为()A. B. C. D.4.若一架飞机向目标投弹,击毁目标的概率为,目标未受损的概率为,则目标受损但未被击毁的概率为()A. B. C. D.5.如图是某个正方体的平面展开图,,是两条侧面对角线,则在该正方体中,与()A.互相平行 B.异面且互相垂直 C.异面且夹角为 D.相交且夹角为6.下图来自古希腊数学家希波克拉底所研究的平面几何图形.此图由两个圆构成,O为大圆圆心,线段AB为小圆直径.△AOB的三边所围成的区域记为I,黑色月牙部分记为Ⅱ,两小月牙之和(斜线部分)部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p1,p2,p3,则()A. B. C. D.7.将所有的正奇数按以下规律分组,第一组:1;第二组:3,5,7;第三组:9,11,13,15,17;…表示n是第i组的第j个数,例如,,则()A. B. C. D.8.已知2弧度的圆心角所对的弧长为2,则这个圆心角所对的弦长是()A. B. C. D.9.已知点,为坐标原点,分别在线段上运动,则的周长的最小值为()A. B. C. D.10.一个等腰三角形绕着底边上的高所在的直线旋转180度所形成的几何体是()A.两个共底面的圆锥 B.半圆锥 C.圆锥 D.圆柱二、填空题:本大题共6小题,每小题5分,共30分。11.无穷等比数列的首项是某个正整数,公比为单位分数(即形如:的分数,为正整数),若该数列的各项和为3,则________.12.某中学调查了某班全部45名同学参加书法社团和演讲社团的情况,数据如下表所示(单位:人).参加书法社团未参加书法社团参加演讲社团85未参加演讲社团230若从该班随机选l名同学,则该同学至少参加上述一个社团的概率为__________.13.如果函数的图象关于直线对称,那么该函数在上的最小值为_______________.14.已知点及其关于原点的对称点均在不等式表示的平面区域内,则实数的取值范围是____.15.等腰直角中,,CD是AB边上的高,E是AC边的中点,现将沿CD翻折成直二面角,则异面直线DE与AB所成角的大小为________.16.在平面直角坐标系中,角的顶点与原点重合,始边与轴的非负半轴重合,终边过点,则_______;_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数f(x)=(1+)sin2x-2sin(x+)sin(x-).(1)若tanα=2,求f(α);(2)若x∈[,],求f(x)的取值范围18.在四棱锥P-ABCD中,四边形ABCD是正方形,PD⊥平面ABCD,且PD=AD=4,点E为线段PA的中点.(1)求证:PC∥平面BDE;(2)求三棱锥E-BCD的体积.19.在数列中,,,数列的前项和为,且.(1)证明:数列是等差数列.(2)若对恒成立,求的取值范围.20.将正弦曲线如何变换可以得到函数的图像,请写出变换过程,并画出一个周期的闭区间的函数简图.21.已知圆经过、、三点.(1)求圆的标准方程;(2)若过点的直线被圆截得的弦的长为,求直线的倾斜角.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
将|a+b2、D【解析】
几何体是一个四棱锥,四棱锥的底面是一个直角梯形,直角梯形的上底是1,下底是2,垂直于底边的腰是2,一条侧棱与底面垂直,这条侧棱长是2.【详解】由三视图可知,几何体是一个四棱锥,四棱锥的底面是一个直角梯形,直角梯形的上底是1,下底是2,垂直于底边的腰是2,一条侧棱与底面垂直,这条侧棱长是2.四棱锥的体积是.故选D.【点睛】本题考查由三视图求几何体的体积,由三视图求几何体的体积,关键是由三视图还原几何体,同时还需掌握求体积的常用技巧如:割补法和等价转化法.3、B【解析】
将只注射过新药和未注射过新药的小动物分别编号,列出所有的基本事件,并确定事件“恰有只注射过该新药”所包含的基本事件的数目,然后利用古典概型的概率计算公式可该事件的概率.【详解】将只注射过新药的小动物编号为、、,只未注射新药的小动物编号为、、,记事件恰有只注射过该新药,所有的基本事件有:、、、、、、、、、、、、、、,共个,其中事件所包含的基本事件个数为个,由古典概型的概率公式得,故选B.【点睛】本题考查古典概型的概率公式,列举基本事件是解题的关键,一般在列举基本事件有枚举法和数状图法,列举时应注意不重不漏,考查计算能力,属于中等题.4、D【解析】
由已知条件利用对立事件概率计算公式直接求解.【详解】由于一架飞机向目标投弹,击毁目标的概率为,目标未受损的概率为;所以目标受损的概率为:;目标受损分为击毁和未被击毁,它们是对立事件;所以目标受损的概率目标受损被击毁的概率目标受损未被击毁的概率;故目标受损但未被击毁的概率目标受损的概率目标受损被击毁的概率,即目标受损但未被击毁的概率;故答案选D【点睛】本题考查概率的求法,注意对立事件概率计算公式的合理运用,属于基础题.5、D【解析】
先将平面展开图还原成正方体,再判断求解.【详解】将平面展开图还原成正方体如图所示,则B,C两点重合,所以与相交,连接,则为正三角形,所以与的夹角为.故选D.【点睛】本题主要考查空间直线的位置关系,意在考查学生对该知识的理解掌握水平和分析推理能力.6、D【解析】
设OA=1,则AB,分别求出三个区域的面积,由测度比是面积比得答案.【详解】设OA=1,则AB,,以AB中点为圆心的半圆的面积为,以O为圆心的大圆面积的四分之一为,以AB为弦的大圆的劣弧所对弓形的面积为π﹣1,黑色月牙部分的面积为π﹣(π﹣1)=1,图Ⅲ部分的面积为π﹣1.设整个图形的面积为S,则p1,p1,p3.∴p1=p1>p3,故选D.【点睛】本题考查几何概型概率的求法,考查数形结合的解题思想方法,正确求出各部分面积是关键,是中档题.7、C【解析】
由等差数列求和公式及进行简单的合情推理可得:2019为第1010个正奇数,设2019在第n组中,则有,,解得:n=32,又前31组共有961个奇数,则2019为第32组的第1010-961=49个数,得解.【详解】由已知有第n组有2n-1个连续的奇数,则前n组共有个连续的奇数,又2019为第1010个正奇数,设2019在第n组中,则有,,解得:n=32,又前31组共有961个奇数,则2019为第32组的第1010-961=49个数,即2019=(32,49),故选:C.【点睛】本题考查归纳推理,解题的关键是根据等差数列求和公式分析出规律,再结合数列的性质求解,属于中等题.8、D【解析】
由弧长公式求出圆半径,再在直角三角形中求解.【详解】,如图,设是中点,则,,,∴.故选D.【点睛】本题考查扇形弧长公式,在求弦长时,常在直角三角形中求解.9、C【解析】
分别求出设关于直线对称的点,关于对称的点,当共线时,的周长取得最小值,为,利用两点间的距离公式,求出答案.【详解】过两点的直线方程为设关于直线对称的点,则,解得即,同理可求关于对称的点,当共线时的周长取得最小值为.故选C.【点睛】本题主要考查了点关于直线的对称性的简单应用,试题的技巧性较强,属于中档题.10、C【解析】
根据旋转体的知识,结合等腰三角形的几何特征,得出正确的选项.【详解】由于等腰三角形三线合一,故等腰三角形绕着底边上的高所在的直线旋转180度所形成的几何体是圆锥.故选C.【点睛】本小题主要考查旋转体的知识,考查等腰三角形的几何特征,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
利用无穷等比数列的各项和,可求得,从而,利用首项是某个自然数,可求,进而可求出.【详解】无穷等比数列各项和为3,,是个自然数,则,.故答案为:【点睛】本题主要考查了等比数列的前项和公式,需熟记公式,属于基础题.12、【解析】
直接利用公式得到答案.【详解】至少参加上述一个社团的人数为15故答案为【点睛】本题考查了概率的计算,属于简单题.13、【解析】
根据三角公式得辅助角公式,结合三角函数的对称性求出值,再利用的取值范围求出函数的最小值.【详解】解:,令,则,则.因为函数的图象关于直线对称,所以,即,则,平方得.整理可得,则,所以函数.因为,所以,当时,即,函数有最小值为.故答案为:.【点睛】本题主要考查三角函数最值求解,结合辅助角公式和利用三角函数的对称性建立方程是解决本题的关键.14、【解析】
根据题意,设与关于原点的对称,分析可得的坐标,由二元一次不等式的几何意义可得,解可得的取值范围,即可得答案.【详解】根据题意,设与关于原点的对称,则的坐标为,若、均在不等式表示的平面区域内,则有,解可得:,即的取值范围为,;故答案为,.【点睛】本题考查二元一次不等式表示平面区域的问题,涉及不等式的解法,属于基础题.15、【解析】
取的中点,连接,则与所成角即为与所成角,根据已知可得,,可以判断三角形为等边三角形,进而求出异面直线直线DE与AB所成角.【详解】取的中点,连接,则,直线DE与AB所成角即为与所成角,,,,,,即三角形为等边三角形,异面直线DE与AB所成角的大小为.故答案为:【点睛】本题考查立体几何中的翻折问题,考查了异面直线所成的角,考查了学生的空间想象能力,属于基础题.16、【解析】
根据三角函数的定义直接求得的值,即可得答案.【详解】∵角终边过点,,∴,,,∴.故答案为:;.【点睛】本题考查三角函数的定义,考查运算求解能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)[0,].【解析】
(1)f(x)=·sin2x-2(sinx+cosx)(sinx-cosx)=sin2x+cosxsinx-sin2x+cos2x=sinxcosx+cos2x,∴f(α)====.(2)由(1)知,f(x)=cos2x+sinxcosx=+=sin(2x+)+,∵≤x≤,≤2x+≤,-≤sin(2x+)≤1,0≤f(x)≤,∴f(x)∈[0,].本试题组要是考查了三角函数的运用.18、(1)见解析(2)16【解析】
(1)证明EO∥PC得到PC∥平面BDE.(2)先证明EF就是三棱锥E-BCD的高,再利用体积公式得到三棱锥E-BCD的体积.【详解】(1)证明:连结AC交BD于O,连结EO.∵四边形ABCD是正方形,在ΔPAC中,O为AC中点,又∵E为PA中点∴EO∥PC.又∵PC⊄平面BDE,EO⊂平面BDE.∴PC∥平面BDE.(2)解:取AD中点F,连结EF.则EF∥PD且EF=1∵PD⊥平面ABCD,∴EF⊥平面ABCD,∴EF就是三棱锥E-BCD的高.在正方形ABCD中,SΔBCD∴V三棱锥【点睛】本题考查了线面平行,三棱锥的体积,意在考查学生的空间想象能力和计算能力.19、(1)见解析(2)【解析】
(1)根据已知可变形为常数;(2)首先求数列的通项公式,然后利用裂项相消法求,若满足对恒成立,需满足,,求的取值范围.【详解】(1)证明:因为,所以,,则.又,故数列是以1为首项,2为公差的等差数列.(2)由(1)可知,则.因为,所以,所以.易知单调递增,则.所以,且,解得.故的取值范围为.【点睛】本题考查了证明等差数列的方法,以及裂项相消法求和,本题的一个亮点是与函数结合考查数列的最值问题,涉及最值时,需先判断函数的单调性,可以根据函数特征直接判断单调性或是根据的正负判断单调性,然后求最值.20、答案见解析【解析】
利用函数函数的图像变换规律和五点作图法可解.【详解】由函数的图像上的每一点保持纵坐标不变,横坐标扩大为原来的2倍,得到函数的图像,
再将函数的图像向左平移个单位,得到函数的图像.
然后再把函数的图像上每一个点的横坐标保持不变,纵坐标扩大为原来的2倍,得到函数的图像.作函数的图像列表得0100函数图像为【点睛】本题考查函数的图像变换的过程叙述和作出函数的一个周期的简图,属于基础题.21、(1);(2)或.【解析】
(1)设出圆的一般方程,然后代入三个点的坐标,联立方程组可解得;(2)讨论直线的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论