




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届山西省大同一中高一下数学期末复习检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若正项数列的前项和为,满足,则()A. B. C. D.2.已知函数是奇函数,若,则的取值范围是()A. B. C. D.3.在△ABC中,角A,B,C所对的边分别为a,b,c,若a﹣b=ccosB﹣ccosA,则△ABC的形状为()A.等腰三角形 B.等边三角形C.直角三角形 D.等腰三角形或直角三角形4.长方体共顶点的三个相邻面面积分别为,这个长方体的顶点在同一个球面上,则这个球的表面积为()A. B. C. D.5.某象棋俱乐部有队员5人,其中女队员2人,现随机选派2人参加一个象棋比赛,则选出的2人中恰有1人是女队员的概率为()A. B. C. D.6.在正方体中,、分别是棱和的中点,为上底面的中心,则直线与所成的角为()A.30° B.45° C.60° D.90°7.已知非零向量、,“函数为偶函数”是“”的()A.充分非必要条件 B.必要非充分条件C.充要条件 D.既非充分也非必要条件8.设,是平面内一组基底,若,,,则以下不正确的是()A. B. C. D.9.点关于直线对称的点的坐标是()A. B. C. D.10.高一某班男生36人,女生24人,现用分层抽样的方法抽取一个容量为的样本,若抽出的女生为12人,则的值为()A.18 B.20 C.30 D.36二、填空题:本大题共6小题,每小题5分,共30分。11.有下列四个说法:①已知向量,,若与的夹角为钝角,则;②先将函数的图象上各点纵坐标不变,横坐标缩小为原来的后,再将所得函数图象整体向左平移个单位,可得函数的图象;③函数有三个零点;④函数在上单调递减,在上单调递增.其中正确的是__________.(填上所有正确说法的序号)12.已知求______________.13._________________.14.如图1,动点在以为圆心,半径为1米的圆周上运动,从最低点开始计时,用时4分钟逆时针匀速旋转一圈后停止.设点的纵坐标(米)关于时间(分)的函数为,则该函数的图像大致为________.(请注明关键点)15.在等差数列中,若,则__________.16.函数的最大值为,最小值为,则的最小正周期为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知数列满足,.(1)若,求证:数列为等比数列.(2)若,求.18.已知函数(1)求函数的最大值,以及取到最大值时所对应的的集合;(2)在上恒成立,求实数的取值范围.19.己知函数.(1)若,,求;(2)当为何值时,取得最大值,并求出最大值.20.从社会效益和经济效益出发,某地投入资金进行生态环境建设,并以此发展旅游产业,根据规划,本年度投入800万元,以后每年投入将比上年减少,本年度当地旅游业收入估计为400万元,由于该项建设对旅游业的促进作用,预计今后的旅游业收入每年会比上年增加.(1)设年内(本年度为第一年)总投入为万元,旅游业总收入为万元,写出的表达式;(2)至少经过几年,旅游业的总收入才能超过总投入?21.已知时不等式恒成立,求实数的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
利用,化简,即可得到,令,所以,,令,所以原式为数列的前1000项和,求和即可得到答案。【详解】当时,解得,由于为正项数列,故,由,所以,由,可得①,所以②②—①可得,化简可得由于,所以,即,故为首项为1,公差为2的等差数列,则,令,所以,令所以原式故答案选A【点睛】本题主要考查数列通项公式与前项和的关系,以及利用裂项求数列的和,解题的关键是利用,求出数列的通项公式,有一定的综合性。2、C【解析】
由题意首先求得m的值,然后结合函数的性质求解不等式即可.【详解】函数为奇函数,则恒成立,即恒成立,整理可得:,据此可得:,即恒成立,据此可得:.函数的解析式为:,,当且仅当时等号成立,故奇函数是定义域内的单调递增函数,不等式即,据此有:,由函数的单调性可得:,求解不等式可得的取值范围是.本题选择C选项.【点睛】对于求值或范围的问题,一般先利用函数的奇偶性得出区间上的单调性,再利用其单调性脱去函数的符号“f”,转化为解不等式(组)的问题,若f(x)为偶函数,则f(-x)=f(x)=f(|x|).3、D【解析】
用正弦定理化边为角,再由诱导公式和两角和的正弦公式化简变形可得.【详解】∵a﹣b=ccosB﹣ccosA,∴,∴,∴,∴或,∴或,故选:D.【点睛】本题考查正弦定理,考查三角形形状的判断.解题关键是诱导公式的应用.4、A【解析】
设长方体的棱长为,球的半径为,根据题意有,再根据球的直径是长方体的体对角线求解.【详解】设长方体的棱长为,球的半径为,根据题意,,解得,所以,所以外接球的表面积,故选:A【点睛】本题主要考查了球的组合体问题,还考查了运算求解的能力,属于基础题.5、B【解析】
直接利用概率公式计算得到答案.【详解】故选:【点睛】本题考查了概率的计算,属于简单题.6、A【解析】
先通过平移将两条异面直线平移到同一个起点,得到的锐角或直角就是异面直线所成的角,在三角形中再利用余弦定理求出此角即可.【详解】解:先画出图形,将平移到,为直线与所成的角,设正方体的边长为,,,,,,故选:.【点睛】本题主要考查了异面直线及其所成的角,以及余弦定理的应用,属于基础题.7、C【解析】
根据,求出向量的关系,再利用必要条件和充分条件的定义,即可判定,得到答案.【详解】由题意,函数,又为偶函数,所以,则,即,可得,所以,若,则,所以,则,所以函数是偶函数,所以“函数为偶函数”是“”的充要条件.故选C.【点睛】本题主要考查了向量的数量积的运算,函数奇偶性的定义及其判定,以及充分条件和必要条件的判定,着重考查了推理与运算能力,属于基础题.8、D【解析】
由已知及平面向量基本定理可得:,问题得解.【详解】因为,是平面内一组基底,且,由平面向量基本定理可得:,所以,所以D不正确故选D【点睛】本题主要考查了平面向量基本定理的应用,还考查了同角三角函数的基本关系,属于较易题.9、A【解析】
设点关于直线对称的点为,根据斜率关系和中点坐标公式,列出方程组,即可求解.【详解】由题意,设点关于直线对称的点为,则,解得,即点关于直线对称的点为,故选A.【点睛】本题主要考查了点关于直线的对称点的求解,其中解答中熟记点关于直线的对称点的解法是解答的关键,着重考查了运算与求解能力,属于基础题.10、C【解析】
根据分层抽样等比例抽样的特点,进行计算即可.【详解】根据题意,可得,解得.故选:C.【点睛】本题考查分层抽样的等比例抽取的性质,属基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、②③④【解析】
根据向量,函数零点,函数的导数,以及三角函数有关知识,对各个命题逐个判断即可.【详解】对①,若与的夹角为钝角,则且与不共线,即,解得且,所以①错误;对②,先将函数的图象上各点纵坐标不变,横坐标缩小为原来的后,得函数的图象,再将图象整体向左平移个单位,可得函数的图象,②正确;对③,函数的零点个数,即解的个数,亦即函数与的图象的交点个数,作出两函数的图象,如图所示:由图可知,③正确;对④,,当时,,当时,,故函数在上单调递减,在上单调递增,④正确.故答案为:②③④.【点睛】本题主要考查命题的真假判断,涉及向量数量积,三角函数图像变换,函数零点个数的求法,以及函数单调性的判断等知识的应用,属于中档题.12、23【解析】
直接利用数量积的坐标表示求解.【详解】由题得.故答案为23【点睛】本题主要考查平面向量的数量积的计算,意在考查学生对该知识的理解掌握水平,属于基础题.13、3【解析】
分式上下为的二次多项式,故上下同除以进行分析.【详解】由题,,又,故.
故答案为:3.【点睛】本题考查了分式型多项式的极限问题,注意:当时,14、【解析】
根据题意先得出,再画图.【详解】解:设,,,,,则当时,处于最低点,则,,可画图为:故答案为:【点睛】本题考查了三角模型的实际应用,关键是根据题意建立函数模型,属中档题.15、【解析】
利用等差数列广义通项公式,将转化为,从而求出的值,再由广义通项公式求得.【详解】在等差数列中,由,,得,即..故答案为:1.【点睛】本题考查等差数列广义通项公式的运用,考查基本量法求解数列问题,属于基础题.16、【解析】
先换元,令,所以,利用一次函数的单调性,列出等式,求出,然后利用正切型函数的周期公式求出即可.【详解】令,所以,由于,所以在上单调递减,即有,解得,,故最小正周期为.【点睛】本题主要考查三角函数的性质的应用,正切型函数周期公式的应用,以及换元法的应用.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)答案见解析【解析】
(1)证明即可;(2)化简,讨论,和即可求解【详解】因为,所以,所以.又所以数列是以3为首项,9为公比的等比数列.(2)因为,所以,所以:当时,当时,.当时,.【点睛】本题考查等比数列的证明,极限的运算,注意分类讨论的应用,是中档题18、,,;(2)【解析】
(1).此时,(2),,即,.,,且,,即的取值范围是.19、(1);(1),1.【解析】
(1)由题得,再求出x的值;(1)先化简得到,再利用三角函数的性质求函数的最大值及此时x的值.【详解】(1)令,则,因为,所以.(1),当,即时,的最大值为1.【点睛】本题主要考查解简单的三角方程,考查三角函数的最值,意在考查学生对这些知识的理解掌握水平,属于基础题.20、(1),;(2)至少经过5年,旅游业的总收入才能超过总投入.【解析】
(1)利用等比数列求和公式可求出n年内的旅游业总收入与n年内的总投入;(2)设至少经过年旅游业的总收入才能超过总投入,可得->0,结合(1)可得,解得,进而可得结果.【详解】(1)第1年投入为800万元,第2年投入为800×(1-)万元,…第n年投入为800×(1-)n-1万元,所以,n年内的总投入为=800+800×(1-)+…+800×(1-)n-1==4000×[1-()n]第1年旅游业收入为400万元,第2年旅游业收入为400×(1+),…,第n年旅游业收入400×(1+)n-1万元.所以,n年内的旅游业总收入为=400+400×(1+)+…+400×(1+)n-1==1600×[()n-1](2)设至少经过n年旅游业的总收入才能超过总投入,由此->0,即:1600×[()n-1]-4000×[1-()n]>0,令x=()n,代入上式得:5x2-7x+2>0.解此不等式,得x<,或x>1(舍去).即()n<,由此得n≥5.∴至少经
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 湖北鄂州市2024-2025学年普通高中毕业班质量检查语文试题含解析
- 山东省利津县联考2025届初三下学期九月份统一联考语文试题含解析
- 西安音乐学院《地球物理测井与生产测井》2023-2024学年第一学期期末试卷
- 厦门海洋职业技术学院《医药英文文献阅读与论文撰写》2023-2024学年第二学期期末试卷
- 淮北师范大学《影视动画灯光设计》2023-2024学年第一学期期末试卷
- 江西省赣州市大余县2025届初三下学期期末质量抽测生物试题含解析
- 环境污染治理与大数据应用考核试卷
- 卫生服务机构财务管理的考核试卷
- 碳排放减少与绿色生活方式考核试卷
- 果蔬销售终端服务技巧与礼仪考核试卷
- 中集集装箱安全培训
- 名著导读郭沫若《凤凰涅槃》
- 钢便桥专项施工方案
- 管辖权异议申请书(模板)
- 撤销强制执行申请书
- 明框玻璃幕墙计算书
- 人教版高一数学必修一各章节同步练习(含答案)
- 人教版一年级语文下册《荷叶圆圆》教案
- 彩钢板安装合同书
- 2023-2023学年福建省厦门市思明区双十中学八年级期中数学试卷
- 刻蚀设备与工艺介绍
评论
0/150
提交评论