版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届辽宁省盘锦市辽河油田一中数学高一下期末教学质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知的内角、、的对边分别为、、,且,若,则的外接圆面积为()A. B. C. D.2.若向量,且,则等于()A. B. C. D.3.已知函数的最小正周期为,将该函数的图象向左平移个单位后,得到的图象对应的函数为偶函数,则的图象()A.关于点对称 B.关于直线对称C.关于点对称 D.关于直线对称4.已知数列和数列都是无穷数列,若区间满足下列条件:①;②;则称数列和数列可构成“区间套”,则下列可以构成“区间套”的数列是()A., B.,C., D.,5.某中学初中部共有110名教师,高中部共有150名教师,根据下列频率分布条形图(部分)可知,该校女教师的人数为()A.93 B.123 C.137 D.1676.己知数列和的通项公式分別内,,若,则数列中最小项的值为()A. B.24 C.6 D.77.在ΔABC中,内角A,B,C所对的边分别为a,b,c,若c=2bsinC,B≤πA.π6 B.π4 C.π8.在锐角中ΔABC,角A,B所对的边长分别为a,b.若2asinA.π12B.π6C.π9.若,则下列结论成立的是()A. B.C.的最小值为2 D.10.棱柱的侧面一定是()A.平行四边形 B.矩形 C.正方形 D.菱形二、填空题:本大题共6小题,每小题5分,共30分。11.已知递增数列共有项,且各项均不为零,,如果从中任取两项,当时,仍是数列中的项,则数列的各项和_____.12.某工厂甲、乙、丙三个车间生产了同种产品,数量分别为90件,60件,30件,为了解它们的产品质量是否存在显著差异,采用层抽样方法抽取了一个容量为的样本进行调查,其中从乙车间的产品中抽取了2件,应从甲车间的产品中抽取______件.13.等比数列中首项,公比,则______.14.已知三棱锥,若平面ABC,,则异面直线PB与AC所成角的余弦值为______.15.已知数列前项和,则该数列的通项公式______.16.若满足约束条件,的最小值为,则________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知数列的前项和为,点在直线上.数列满足且,前9项和为153.(1)求数列、的通项公式;(2)设,数列的前项和为,求及使不等式对一切都成立的最小正整数的值;(3)设,问是否存在,使得成立?若不存在,请说明理由.18.已知圆,圆与圆关于直线对称.(1)求圆的方程;(2)过直线上的点分别作斜率为的两条直线,使得被圆截得的弦长与被圆截得的弦长相等.(i)求的坐标;(ⅱ)过任作两条互相垂直的直线分别与两圆相交,判断所得弦长是否恒相等,并说明理由.19.已知函数.(1)求的最小正周期;(2)若,求当时自变量的取值集合.20.某校为创建“绿色校园”,在校园内种植树木,有A、B、C三种树木可供选择,已知这三种树木6年内的生长规律如下:A树木:种植前树木高0.84米,第一年能长高0.1米,以后每年比上一年多长高0.2米;B树木:种植前树木高0.84米,第一年能长高0.04米,以后每年生长的高度是上一年生长高度的2倍;C树木:树木的高度(单位:米)与生长年限(单位:年,)满足如下函数:(表示种植前树木的高度,取).(1)若要求6年内树木的高度超过5米,你会选择哪种树木?为什么?(2)若选C树木,从种植起的6年内,第几年内生长最快?21.如图,在平面直角坐标系中,点为单位圆与轴正半轴的交点,点为单位圆上的一点,且,点沿单位圆按逆时针方向旋转角后到点(1)当时,求的值;(2)设,求的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
先化简得,再利用正弦定理求出外接圆的半径,即得的外接圆面积.【详解】由题得,所以,所以,所以,所以.由正弦定理得,所以的外接圆面积为.故选D【点睛】本题主要考查正弦定理余弦定理解三角形,意在考查学生对这些知识的理解掌握水平和分析推理能力.2、B【解析】
根据坐标形式下向量的平行对应的等量关系,即可计算出的值,再根据坐标形式下向量的加法即可求解出的坐标表示.【详解】因为且,所以,所以,所以.故选:B.【点睛】本题考查根据坐标形式下向量的平行求解参数以及向量加法的坐标运算,难度较易.已知,若则有.3、A【解析】
由周期求出,按图象平移写出函数解析式,再由偶函数性质求出,然后根据正弦函数的性质判断.【详解】由题意,平移得函数式为,其为偶函数,∴,由于,∴.,,.∴是对称中心.故选:A.【点睛】本题考查求三角函数的解析式,考查三角函数的对称性的奇偶性.掌握三角函数图象变换是基础,掌握三角函数的性质是解题关键.4、C【解析】
直接利用已知条件,判断选项是否满足两个条件即可.【详解】由题意,对于A:,,∵,∴不成立,所以A不正确;对于B:由,,得不成立,所以B不正确;对于C:,∵,∴成立,并且也成立,所以C正确;对于D:由,,得,∴不成立,所以D不正确;故选:C.【点睛】本题考查新定义的理解和运用,考查数列的极限的求法,考查分析问题解决问题的能力及运算能力,属于中档题.5、C【解析】.6、D【解析】
根据两个数列的单调性,可确定数列,也就确定了其中的最小项.【详解】由已知数列是递增数列,数列是递减数列,且计算后知,又,∴数列中最小项的值是1.故选D.【点睛】本题考查数列的单调性,数列的最值.解题时依据题意确定大小即可.本题难度一般.7、A【解析】
利用正弦定理可求得sinB=12【详解】因为c=2bsinC,所以sinC=2sinBsinC,所以sinB=1【点睛】本题主要考查正弦定理的运用,难度较小.8、D【解析】试题分析:∵2a考点:正弦定理解三角形9、D【解析】
由,根据不等式乘方性质可判断A不成立;由指数函数单调性可判断B不成立;由基本不等式可判断C不成立,D成立.【详解】对于A,若,则有,故A不成立;对于B,根据指数函数单调性,函数单调递减,,故B不成立;对于C,由基本不等式,a=b取得最小值,由不能取得最小值,故C不成立;则D能成立.故选:D.【点睛】本题考查基本不等式、不等式的基本性质,考查不等式性质的应用,属于基础题.10、A【解析】根据棱柱的性质可得:其侧面一定是平行四边形,故选A.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
∵当时,仍是数列中的项,而数列是递增数列,∴,所以必有,,利用累加法可得:,故,得,故答案为.点睛:本题主要考查了数列的求和,解题的关键是单调性的利用以及累加法的运用,有一定难度;根据题中条件从中任取两项,当时,仍是数列中的项,结合递增数列必有,,利用累加法可得结果.12、.【解析】
根据分层抽样中样本容量关系,即可求得从甲车间的产品中抽取数量.【详解】根据分层抽样为等概率抽样,所以乙车间每个样本被抽中的概率等于甲车间每个样本被抽中的概率设从甲车间抽取样本为件所以,解得所以从甲车间抽取样本件故答案为:【点睛】本题考查了分层抽样的特征及样本数量的求法,属于基础题.13、9【解析】
根据等比数列求和公式,将进行转化,然后得到关于和的等式,结合,讨论出和的值,得到答案.【详解】因为等比数列中首项,公比,所以成首项为,公比为的等比数列,共项,所以整理得因为所以可得,等式右边为整数,故等式左边也需要为整数,则应是的约数,所以可得,所以,当时,得,此时当时,得,此时当时,得,此时,所以,故答案为:.【点睛】本题考查等比数列求和的基本量运算,涉及分类讨论的思想,属于中档题.14、【解析】
过B作,且,则或其补角即为异面直线PB与AC所成角由此能求出异面直线PB与AC所成的角的余弦值.【详解】过B作,且,则四边形为菱形,如图所示:或其补角即为异面直线PB与AC所成角.设.,,平面ABC,,.异面直线PB与AC所成的角的余弦值为.故答案为.【点睛】本题考查异面直线所成角的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.15、【解析】
由,n≥2时,两式相减,可得{an}的通项公式;【详解】∵Sn=2n2(n∈N*),∴n=1时,a1=S1=2;n≥2时,an=Sn﹣=4n﹣2,a1=2也满足上式,∴an=4n﹣2故答案为【点睛】本题考查数列的递推式,考查数列的通项,属于基础题.16、4【解析】
由约束条件得到可行域,取最小值时在轴截距最小,通过直线平移可知过时,取最小值;求出点坐标,代入构造出方程求得结果.【详解】由约束条件可得可行域如下图阴影部分所示:取最小值时,即在轴截距最小平移直线可知,当过点时,在轴截距最小由得:,解得:本题正确结果:【点睛】本题考查现行规划中根据最值求解参数的问题,关键是能够明确最值取得的点,属于常考题型.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)1009;(3)m=11.【解析】
(1)运用数列的通项公式和前n项和的关系,即可得到数列的通项公式;运用等差数列的通项和求和公式,求出公差,即可得到数列的通项公式;(2)化简,运用裂项相消法求和,求出数列的前n项和为,再由数列的单调性,即可得出k的最小值;(3)分m为奇数和m为偶数,分别利用条件,求出m的值,可得结论.【详解】(1)(2)(3)当为奇数时,当为偶数时,.【点睛】该题考查的是有关数列的问题,涉及到的知识点有等差数列的通项公式,数列的项与和的关系,裂项相消法求和,应用题的条件,得到相应的结果.18、(1);(2)(i),(ii)见解析【解析】
(1)根据题意,将问题转化为关于直线的对称点即可得到,半径不变,从而得到方程;(2)(i)设,由于弦长和距离都相等,故P到两直线的距离也相等,利用点到线距离公式即可得到答案;(ⅱ)分别讨论斜率不存在和为0三种情况分别计算对应弦长,故可判断.【详解】(1)设,因为圆与圆关于直线对称,,则直线与直线垂直,中点在直线上,得解得所以圆.(2)(i)设的方程为,即;的方程为,即.因为被圆截得的弦长与被圆截得的弦长相等,且两圆半径相等,所以到的距离与到的距离相等,即,所以或.由题意,到直线的距离,所以不满足题意,舍去,故,点坐标为.(ii)过点任作互相垂直的两条直线分别与两圆相交,所得弦长恒相等.证明如下:当的斜率等于0时,的斜率不存在,被圆截得的弦长与被圆截得的弦长都等于圆的半径;当的斜率不存在,的斜率等于0时,与圆不相交,与圆不相交.当、的斜率存在且都不等于0,两条直线分别与两圆相交时,设、的方程分别为,即.因为到的距离,到的距离,所以到的距离与到的距离相等.所以圆与圆的半径相等,所以被圆截得的弦长与被圆截得的弦长恒相等.综上所述,过点任作互相垂直的两条直线分别与两圆相交,所得弦长恒相等.【点睛】本题主要考查点的对称问题,直线与圆的位置关系,计算量较大,意在考查学生的转化能力,计算能力,难度中等.19、(1);(2)或【解析】
(1)由辅助角公式可得,再求周期即可;(2)由求出,再解方程即可.【详解】解:(1),则的最小正周期为.(2)因为,所以,即,解得.因为,所以.因为,所以,即,则或,解得或.故当时,自变量的取值集合为或.【点睛】本题考查了三角恒等变换,重点考查了解三角方程,属中档题.20、(1)选择C;(2)第4或第5年.【解析】
(1)根据已知求出三种树木六年末的高度,判断得解;(2)设为第年内树木生长的高度,先求出,设,则,.再利用分析函数的单调性,分析函数的图像得解.【详解】(1)由题意可知,A、B、C三种树木随着时间的增加,高度也在增加,6年末:A树木的高度为(米):B树木的高度为(米):C树木的高度为(米),所以选择C树木.(2)设为第年内树木生长的高度,则,所以,,.设,则,.令,因为在区间上是减函数,在区间上是增函数,所以当时,取得最小值,从而取得最大值,此时,解得,因为,,故的可能值为3或4,又,,即.因此,种植后第4或第5年内该树木生长最快.【点睛】本题主要考查等差数列和等比数列求和,考查函数的图像和性质的应用,意在考查学生对这些知识的理解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 家用纺织品的产品线调整与升级换代考核试卷
- 涡轮增压汽油发动机调教考核试卷
- 森林改培与生态经济发展考核试卷
- 海水淡化处理中的污泥处理技术应用考核试卷
- 财政支出项目绩效评价报告
- DB11T 269-2014 粪便处理设施运行管理规范
- DB11∕T 1796-2020 文物建筑三维信息采集技术规程
- 大班课件比赛教学课件
- 医院新员工培训计划
- 淮阴工学院《快速表现》2021-2022学年第一学期期末试卷
- 国家开放大学《电气传动与调速系统》章节测试参考答案
- 须弥(短篇小说)
- 旋风除尘器设计与计算
- 《装配基础知识培训》
- 出口退税的具体计算方法及出口报价技巧
- PCB镀层与SMT焊接
- Unit 1 This is my new friend. Lesson 5 课件
- 2019年青年英才培养计划项目申报表
- 剪纸教学课件53489.ppt
- 芳香油的提取
- 企业人才测评发展中心建设方案
评论
0/150
提交评论