版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省遂宁市二中2025届高一下数学期末统考模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在计算机BASIC语言中,函数表示整数a被整数b除所得的余数,如.用下面的程序框图,如果输入的,,那么输出的结果是()A.7 B.21 C.35 D.492.的内角的对边分别为,面积为,若,则外接圆的半径为()A. B. C. D.3.将函数的图像上的所有点向右平移个单位长度,得到函数的图像,若的部分图像如图所示,则函数的解析式为A. B.C. D.4.函数定义域是()A. B. C. D.5.已知函数,其函数图像的一个对称中心是,则该函数的单调递增区间可以是()A. B. C. D.6.已知是边长为4的等边三角形,为平面内一点,则的最小值是()A. B. C. D.7.已知函数,函数的最小值等于()A. B. C.5 D.98.已知且为常数,圆,过圆内一点的直线与圆相交于两点,当弦最短时,直线的方程为,则的值为()A.2 B.3 C.4 D.59.已知x,y为正实数,则()A.2lgx+lgy=2lgx+2lgy B.2lg(x+y)=2lgx•2lgyC.2lgx•lgy=2lgx+2lgy D.2lg(xy)=2lgx•2lgy10.已知实数满足,则的取值范围是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在等差数列中,若,则的前13项之和等于______.12.已知曲线与直线交于A,B两点,若直线OA,OB的倾斜角分别为、,则__________13.读程序,完成下列题目:程序如图:(1)若执行程序时,没有执行语句,则输入的的范围是_______;(2)若执行结果,输入的的值可能是___.14.的化简结果是_________.15.已知数列从第项起每项都是它前面各项的和,且,则的通项公式是__________.16.已知实数满足条件,则的最大值是________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.锐角三角形的内角A,B,C的对边分别为a,b,c,且.(1)求A;(2)若,,求面积.18.已知三棱柱中,三个侧面均为矩形,底面为等腰直角三角形,,点为棱的中点,点在棱上运动.(1)求证;(2)当点运动到某一位置时,恰好使二面角的平面角的余弦值为,求点到平面的距离;(3)在(2)的条件下,试确定线段上是否存在一点,使得平面?若存在,确定其位置;若不存在,说明理由.19.已知.(1)设,求满足的实数的值;(2)若为上的奇函数,试求函数的反函数.20.在△ABC中,角A,B,C所对的边分别为a,b,c,且acosC+ccosA=2bcosA.
(1)求角A的值;
(2)若,,求△ABC的面积S.21.在中,内角所对的边分别为,已知,且.(1)求;(2)若,求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
模拟执行循环体,即可得到输出值.【详解】,,,,继续执行得,,继续执行得,,结束循环,输出.故选:B.【点睛】本题考查循环体的执行,属程序框图基础题.2、A【解析】
出现面积,可转化为观察,和余弦定理很相似,但是有差别,差别就是条件是形式,而余弦定理中是形式,但是我们可以注意到:,所以可以完成本题.【详解】由,所以在三角形中,再由正弦定理所以答案选择A.【点睛】本题很灵活,在常数4的处理问题上有点巧妙,然后再借助余弦定理及正弦定理,难度较大.3、C【解析】
根据图象求出A,ω和φ的值,得到g(x)的解析式,然后将g(x)图象上的所有点向左平移个单位长度得到f(x)的图象.【详解】由图象知A=1,(),即函数的周期T=π,则π,得ω=2,即g(x)=sin(2x+φ),由五点对应法得2φ=2kπ+π,k,得φ,则g(x)=sin(2x),将g(x)图象上的所有点向左平移个单位长度得到f(x)的图象,即f(x)=sin[2(x)]=sin(2x)=,故选C.【点睛】本题主要考查三角函数解析式的求解,结合图象求出A,ω和φ的值以及利用三角函数的图象变换关系是解决本题的关键.4、A【解析】
若函数有意义,则需满足,进而求解即可【详解】由题,则,解得,故选:A【点睛】本题考查具体函数的定义域,属于基础题5、D【解析】
根据对称中心,结合的范围可求得,从而得到函数解析式;将所给区间代入求得的范围,与的单调区间进行对应可得到结果.【详解】为函数的对称中心,解得:,当时,,此时不单调,错误;当时,,此时不单调,错误;当时,,此时不单调,错误;当时,,此时单调递增,正确本题正确选项:【点睛】本题考查正切型函数单调区间的求解问题,涉及到利用正切函数的对称中心求解函数解析式;关键是能够采用整体对应的方式,将正切型函数与正切函数进行对应,从而求得结果.6、A【解析】
建立平面直角坐标系,表示出点的坐标,利用向量坐标运算和平面向量的数量积的运算,求得最小值,即可求解.【详解】由题意,以中点为坐标原点,建立如图所示的坐标系,则,设,则,所以,所以当时,取得最小值为,故选A.【点睛】本题主要考查了平面向量数量积的应用问题,根据条件建立坐标系,利用坐标法是解答的关键,着重考查了推理与运算能力,属于基础题.7、C【解析】
先将化为,由基本不等式即可求出最小值.【详解】因为,当且仅当,即时,取等号.故选C【点睛】本题主要考查利用基本不等式求函数的最值问题,需要先将函数化为能用基本不等式的形式,即可利用基本不等式求解,属于基础题型.8、B【解析】
由圆的方程求出圆心坐标与半径,结合题意,可得过圆心与点(1,2)的直线与直线2x﹣y=0垂直,再由斜率的关系列式求解.【详解】圆C:化简为圆心坐标为,半径为.如图,由题意可得,当弦最短时,过圆心与点(1,2)的直线与直线垂直.则,即a=1.故选:B.【点睛】本题考查直线与圆位置关系的应用,考查数形结合的解题思想方法与数学转化思想方法,是中档题.一般直线和圆的题很多情况下是利用数形结合来解决的,联立的时候较少;在求圆上的点到直线或者定点的距离时,一般是转化为圆心到直线或者圆心到定点的距离,再加减半径,分别得到最大值和最小值;涉及到圆的弦长或者切线长时,经常用到垂径定理.9、D【解析】因为as+t=as•at,lg(xy)=lgx+lgy(x,y为正实数),所以2lg(xy)=2lgx+lgy=2lgx•2lgy,满足上述两个公式,故选D.10、D【解析】
作出不等式组对应的平面区域,利用目标函数的几何意义,结合数形结合即可得到结论.【详解】由线性约束条件作出可行域,如下图三角形阴影部分区域(含边界),令,直线:,平移直线,当过点时取得最大值,当过点时取得最小值,所以的取值范围是.【点睛】本题主要考查线性规划的应用.本题先正确的作出不等式组表示的平面区域,再结合目标函数的几何意义进行解答是解决本题的关键.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
根据题意,以及等差数列的性质,先得到,再由等差数列的求和公式,即可求出结果.【详解】因为是等差数列,,所以,即,记前项和为,则.故答案为:【点睛】本题主要考查等差数列前项和的基本量的运算,熟记等差数列的性质以及求和公式即可,属于基础题型.12、【解析】
曲线即圆曲线的上半部分,因为圆是单位圆,所以,,,,联立曲线与直线方程,消元后根据韦达定理与直线方程代入即可求解.【详解】由消去得,则,由三角函数的定义得故.【点睛】本题主要考查三角函数的定义,直线与圆的应用.此题关键在于曲线的识别与三角函数定义的应用.13、2【解析】
(1)不执行语句,说明不满足条件,,从而得;(2)执行程序,有当时,,只有,.【详解】(1)不执行语句,说明不满足条件,,故有.(2)当时,,只有,.故答案为:(1)(2);【点睛】本题主要考察程序语言,考查对简单程序语言的阅读理解,属于基础题.14、【解析】原式,因为,所以,且,所以原式.15、【解析】
列举,可找到是从第项起的等比数列,由首项和公比即可得出通项公式.【详解】解:,即,所以是从第项起首项,公比的等比数列.通项公式为:故答案为:【点睛】本题考查数列的通项公式,可根据递推公式求出.16、8【解析】
画出满足约束条件的可行域,利用目标函数的几何意义求解最大值即可.【详解】实数,满足条件的可行域如下图所示:将目标函数变形为:,则要求的最大值,即使直线的截距最大,由图可知,直线过点时截距最大,,故答案为:8.【点睛】本题考查线性规划的简单应用,解题关键是明确目标函数的几何意义.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),(2)【解析】
(1)利用三角函数的和差公式化简已知等式可得,结合为锐角可得的值.(2)由余弦定理可得,解得的值,根据三角形的面积公式即可求解.【详解】(1)∵,∴∵∴可得:∵A,C为锐角,∴,可得:(2)∵∴由余弦定理,可得:,即,解得:或3,因为为锐角三角形,所以需满足所以所以的面积为【点睛】本题主要考查了三角函数恒等变换及余弦定理,三角形的面积公式在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.18、(1)见解析;(2);(3)存在,为中点.【解析】
(1)以CB为x轴,CA为y轴,CC1为z轴,C为原点建立坐标系,设E(m,0,2),要证A1C⊥AE,可证,只需证明,利用向量的数量积运算即可证明;(2)分别求出平面EA1D、平面A1DB的一个法向量,由两法向量夹角余弦值的绝对值等于,解得m值,由此可得答案;(3)在(2)的条件下,设F(x,y,0),可知与平面A1DB的一个法向量平行,由此可求出点F坐标,进而求出||,即得答案.【详解】(1)以CB为x轴,CA为y轴,CC1为z轴,C为原点建立坐标系,设E(m,0,2),C(0,0,0),A(0,2,0),A1(0,2,2),D(0,0,1),B(2,0,0),=(0,﹣2,﹣2),=(m,﹣2,2),因为=0+(﹣2)×(﹣2)﹣2×2=0,所以⊥,即A1C⊥AE;(2)=(m,0,1),=(0,2,1),设=(x,y,z)为平面EA1D的一个法向量,则即,取=(2,m,﹣2m),=(2,0,﹣1),设=(x,y,z)为平面A1DB的一个法向量,则,即,取=(1,﹣1,2),由二面角E﹣A1D﹣B的平面角的余弦值为,得||=,解得m=1,平面A1DB的一个法向量=(1,﹣1,2),根据点E到面的距离为:.(3)由(2)知E(1,0,2),且=(1,﹣1,2)为平面A1DB的一个法向量,设F(x,y,0),则=(x﹣1,y,﹣2),且,所以x﹣1=﹣1,y=1,解得x=0,y=1,所以=(﹣1,1,﹣2),==,故EF的长度为,此时点F(0,1,0).存在F点为AC中点.【点睛】本题考查重点考查直线与平面垂直的性质、二面角的平面角及其求法、空间点、线、面间距离计算,考查学生空间想象能力、推理论证能力.19、(1);(2).【解析】
(1)把代入函数解析式,代入方程即可求解.(2)由函数奇偶性得,然后求得的解析式,分段求解反函数即可.【详解】(1)当时,,由,得,即,解得.(2)为上的奇函数,,则.,由,,得,;由,,得,.函数的反函数为.【点睛】本题主要考查了函数的解析式及求法,考查了反函数的求法,属于中档题.20、(1)(1)【解析】试题分析:(1)由已知利用正弦定理,两角和的正弦公式、诱导公式化简可得,结合,可求,进而可求的值;(1)由已知及余弦定理,平方和公式可求的值,进而利用三角形面积公式即可计算得解.试题解析:(1)在△ABC中,∵acosC+ccosA=1bcosA,∴sinAcosC+sinCc
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 行政法试题题库
- 工程索赔报告书实例
- 妊娠期高血糖孕期管理新进展
- 应用文满分策略3
- 专题06有理数的加减(3大考点9种题型)(原卷版)
- 人教部编版八年级语文上册《单元复习》公开示范课教学课件
- 降低患者外出检查漏检率-品管圈课件
- 五年级上册生命安全教育全册教案
- 六年级安全与环境教育教案
- JimWaters先生与沃特世公司的发展历程
- 【初中数学 】第五章 相交线与平行线 章节练习题 2023-2024学年人教版数学七年级下册
- 工业产品质量安全风险监测实施规范
- 482023年广西职业院校技能大赛中职组《职业英语技能》赛项职场应用环节样题
- 高中化学教学学生高阶思维能力培养路径分析
- 原始记录书写培训课件
- 《数学家高斯》课件
- 2023年中国石化安庆石化公司校园招聘150人历年高频难易度、易错点模拟试题(共500题)附带答案详解
- 《小学生的自我保护》课件
- 项目质量管理与保障措施
- 2023年10月自考试题06089劳动关系与劳动法
- 岗位风险排查管理制度
评论
0/150
提交评论