上海市静安区、青浦区2025届高一下数学期末质量检测模拟试题含解析_第1页
上海市静安区、青浦区2025届高一下数学期末质量检测模拟试题含解析_第2页
上海市静安区、青浦区2025届高一下数学期末质量检测模拟试题含解析_第3页
上海市静安区、青浦区2025届高一下数学期末质量检测模拟试题含解析_第4页
上海市静安区、青浦区2025届高一下数学期末质量检测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

上海市静安区、青浦区2025届高一下数学期末质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.将函数的图象上各点沿轴向右平移个单位长度,所得函数图象的一个对称中心为()A. B. C. D.2.已知数列的前项和为,令,记数列的前项为,则()A. B. C. D.3.设为直线,是两个不同的平面,下列命题中正确的是()A.若,,则 B.若,,则C.若,,则 D.若,,则4.执行下面的程序框图,则输出的的值为()A.10 B.34 C.36 D.1545.直线xy+1=0的倾斜角是()A.30° B.60°C.120° D.150°6.茎叶图记录了甲、乙两组各6名学生在一次数学测试中的成绩(单位:分).已知甲组数据的众数为124,乙组数据的平均数即为甲组数据的中位数,则,的值分别为A. B.C. D.7.在中,角A,B,C所对的边分别为a,b,c,若,,则的值为()A. B. C. D.8.我国古代著名的周髀算经中提到:凡八节二十四气,气损益九寸九分六分分之一;冬至晷长一丈三尺五寸,夏至晷长一尺六寸意思是:一年有二十四个节气,每相邻两个节气之间的日影长度差为分;且“冬至”时日影长度最大,为1350分;“夏至”时日影长度最小,为160分则“立春”时日影长度为A.分 B.分 C.分 D.分9.已知直线和互相平行,则它们之间的距离是()A. B. C. D.10.一个学校高一、高二、高三的学生人数之比为2:3:5,若用分层抽样的方法抽取容量为200的样本,则应从高三学生中抽取的人数为:A.100 B.80 C.60 D.40二、填空题:本大题共6小题,每小题5分,共30分。11.在等差数列中,已知,,则________.12.在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称.若,则=___________.13.用列举法表示集合__________.14.函数的定义域为_________.15.公比为的无穷等比数列满足:,,则实数的取值范围为________.16.已知数列满足:,则___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知集合.(Ⅰ)求;(Ⅱ)若集合,写出集合的所有子集.18.已知平面向量,且(1)若是与共线的单位向量,求的坐标;(2)若,且,设向量与的夹角为,求.19.已知数列的前项和为,且,.(1)试写出数列的任意前后两项(即、)构成的等式;(2)用数学归纳法证明:.20.某种汽车,购车费用是10万元,每年使用的保险费和汽油费为万元,年维修费第一年为万元,以后逐年递增万元,问这种汽车使用多少年时,它的年平均费用最少?21.已知方程有两个实根,记,求的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

先求得图象变换后的解析式,再根据正弦函数对称中心,求出正确选项.【详解】向右平移的单位长度,得到,由解得,当时,对称中心为,故选A.【点睛】本小题主要考查三角函数图象变换,考查三角函数对称中心的求法,属于基础题.2、B【解析】

由数列的前项和求通项,再由数列的周期性及等比数列的前项和求解.【详解】因为,当时,得;当,且时,,不满足上式,∴,所以,当时,;当是偶数时,为整数,则,所以;故对于任意正整数,均有:因为,所以.因为为偶数,所以,而,所以.故选:B.【点睛】本题考查数列的函数概念与表示、余弦函数的性质、正弦函数的诱导公式以及数列求和,解题的关键是当时,,和的推导,本题属于难题.3、B【解析】A中,也可能相交;B中,垂直与同一条直线的两个平面平行,故正确;C中,也可能相交;D中,也可能在平面内.【考点定位】点线面的位置关系4、B【解析】试题分析:第一次循环:第二次循环:第三次循环:第四次循环:结束循环,输出,选B.考点:循环结构流程图【名师点睛】算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.5、D【解析】

首先求出直线的斜率,由倾斜角与斜率的关系即可求解.【详解】直线xy+1=0的斜率,设其倾斜角为θ(0°≤θ<180°),则tan,∴θ=150°故选:D【点睛】本题考查直线斜率与倾斜角的关系,属于基础题.6、A【解析】

根据众数的概念可确定;根据平均数的计算方法可构造方程求得.【详解】甲组数据众数为甲组数据的中位数为乙组数据的平均数为:,解得:本题正确选项:【点睛】本题考查茎叶图中众数、中位数、平均数的求解,属于基础题.7、D【解析】

由正弦定理及余弦定理可得,,然后求解即可.【详解】解:由可得,则,①又,所以,即,所以②由①②可得:,由余弦定理可得,故选:D.【点睛】本题考查了正弦定理及余弦定理的综合应用,重点考查了两角和的正弦公式,属中档题.8、B【解析】

首先“冬至”时日影长度最大,为1350分,“夏至”时日影长度最小,为160分,即可求出,进而求出立春”时日影长度为.【详解】解:一年有二十四个节气,每相邻两个节气之间的日影长度差为分,且“冬至”时日影长度最大,为1350分;“夏至”时日影长度最小,为160分.,解得,“立春”时日影长度为:分.故选B.【点睛】本题考查等差数列的性质等基础知识,考查运算求解能力,利用等差数列的性质直接求解.9、D【解析】

由已知中直线和互相平行,求出的值,再根据两条平行线间的距离公式求得它们之间的距离.【详解】∵直线和互相平行,则,将直线的方程化为,则两条平行直线之间的距离,===.故选:D.【点睛】本题主要考查两条直线平行的性质,两条平行线间的距离公式的应用,属于中档题.10、A【解析】

根据分层抽样的方法,得到高三学生抽取的人数为,即可求解,得到答案.【详解】由题意,学校高一、高二、高三的学生人数之比为2:3:5,采用分层抽样的方法抽取容量为200的样本,所以高三学生抽取的人数为人,故选A.【点睛】本题主要考查了分层抽样的应用,其中解答中熟记分层抽样的方法是解答的关键,着重考查了推理与运算能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、-16【解析】

设等差数列的公差为,利用通项公式求出即可.【详解】设等差数列的公差为,得,则.故答案为【点睛】本题考查了等差数列通项公式的应用,属于基础题.12、【解析】试题分析:因为和关于轴对称,所以,那么,(或),所以.【考点】同角三角函数,诱导公式,两角差的余弦公式【名师点睛】本题考查了角的对称关系,以及诱导公式,常用的一些对称关系包含:若与的终边关于轴对称,则,若与的终边关于轴对称,则,若与的终边关于原点对称,则.13、【解析】

先将的表示形式求解出来,然后根据范围求出的可取值.【详解】因为,所以,又因为,所以,此时或,则可得集合:.【点睛】本题考查根据三角函数值求解给定区间中变量的值,难度较易.14、【解析】

根据对数函数的真数大于0,列出不等式求解集即可.【详解】对数函数f(x)=log2(x﹣1)中,x﹣1>0,解得x>1;∴f(x)的定义域为(1,+∞).故答案为:(1,+∞).【点睛】本题考查了求对数函数的定义域问题,是基础题.15、【解析】

依据等比数列的定义以及无穷等比数列求和公式,列出方程,即可求出的表达式,再利用求值域的方法求出其范围。【详解】由题意有,即,因为,所以。【点睛】本题主要考查无穷等比数列求和公式的应用以及基本函数求值域的方法。16、0【解析】

先由条件得,然后【详解】因为所以因为,且所以,即故答案为:0【点睛】本题考查的是数列的基础知识,较简单.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ)(Ⅱ).【解析】

(Ⅰ)求解二次不等式从而求得集合A,利用指数函数的图像求出集合B,再进行并集运算即可;(Ⅱ)依次求出,,即可写出集合C的子集.【详解】(Ⅰ)由,得,即有,于是.作出函数的图象可知,于是,所以,(Ⅱ),,集合的所有子集是:.【点睛】本题考查集合的基本运算,集合的子集,属于基础题.18、或【解析】分析:(1)由与共线,可设,又由为单位向量,根据,列出方程即可求得向量的坐标;(2)根据向量的夹角公式,即可求解向量与的夹角.详解:与共线,又,则,为单位向量,,或,则的坐标为或,,.点睛:对于平面向量的运算问题,通常用到:1、平面向量与的数量积为,其中是与的夹角,要注意夹角的定义和它的取值范围:;2、由向量的数量积的性质有,,,因此利用平面向量的数量积可以解决与长度、角度、垂直等有关的问题;3、本题主要利用向量的模与向量运算的灵活转换,应用平面向量的夹角公式,建立的方程.19、(1);(2)证明见解析.【解析】

(1)由,可得出,两式相减,化简即可得出结果;(2)令代入求出的值,再由求出的值,可验证和时均满足,并假设当时等式成立,利用数学归纳法结合数列的递推公式推导出时等式也成立,综合可得出结论.【详解】(1)对任意的,由可得,上述两式相减得,化简得;(2)①当时,由可得,解得,满足;②当时,由于,则,满足;③假设当时,成立,则有,由于,则.这说明,当时,等式也成立.综合①②③,.【点睛】本题考查数列递推公式的求解,同时也考查了利用数学归

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论