2025届新疆维吾尔自治区喀什二中高一数学第二学期期末考试试题含解析_第1页
2025届新疆维吾尔自治区喀什二中高一数学第二学期期末考试试题含解析_第2页
2025届新疆维吾尔自治区喀什二中高一数学第二学期期末考试试题含解析_第3页
2025届新疆维吾尔自治区喀什二中高一数学第二学期期末考试试题含解析_第4页
2025届新疆维吾尔自治区喀什二中高一数学第二学期期末考试试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届新疆维吾尔自治区喀什二中高一数学第二学期期末考试试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在中,内角所对的边分别为,且,则()A. B. C. D.2.已知函数,若存在满足,且,则n的最小值为()A.3 B.4 C.5 D.63.已知正方体的个顶点中,有个为一侧面是等边三角形的正三棱锥的顶点,则这个正三棱锥与正方体的全面积之比为()A. B. C. D.4.函数的零点所在的一个区间是().A. B. C. D.5.在平面直角坐标系xOy中,点P(2,–1)到直线l:4x–3y+4=0的距离为()A.3 B. C.1 D.36.一个正四棱锥的底面边长为2,高为,则该正四棱锥的全面积为A.8 B.12 C.16 D.207.已知,则()A. B. C. D.8.某小组由名男生、名女生组成,现从中选出名分别担任正、副组长,则正、副组长均由男生担任的概率为()A. B. C. D.9.已知为等比数列的前项和,,,则A. B. C. D.1110.若,则()A.0 B.-1 C.1或0 D.0或-1二、填空题:本大题共6小题,每小题5分,共30分。11.在锐角中,角、、所对的边为、、,若的面积为,且,,则的弧度为__________.12.在中,角、、所对的边为、、,若,,,则角________.13.如图,已知,,任意点关于点的对称点为,点关于点的对称点为,则向量_______(用,表示向量)14.已知为等差数列,,前n项和取得最大值时n的值为___________.15.若a、b、c正数依次成等差数列,则的最小值为_______.16.若,,,则M与N的大小关系为___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为(1)求频率分布直方图中的值;(2)估计该企业的职工对该部门评分不低于80的概率;(3)从评分在的受访职工中,随机抽取2人,求此2人评分都在的概率.18.求函数的单调递增区间.19.已知.若三点共线,求实数的值.20.若,讨论关于x的方程在上的解的个数.21.在中,内角A、B、C所对的边分别为,,,已知.(Ⅰ)求角B的大小;(Ⅱ)设,,求.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

根据题目条件结合三角形的正弦定理以及三角形内角和定理可得sinA,进而利用二倍角余弦公式得到结果.【详解】∵.∴sinAcosB=4sinCcosA﹣sinBcosA即sinAcosB+sinBcosA=4cosAsinC∴sinC=4cosAsinC∵1<C<π,sinC≠1.∴1=4cosA,即cosA,那么.故选C【点睛】本题考查了正弦定理及二倍角余弦公式的灵活运用,考查计算能力,属于基础题.2、D【解析】

根据正弦函数的性质,对任意(i,j=1,2,3,…,n),都有,因此要使得满足条件的n最小,则尽量让更多的取值对应的点是最值点,然后再对应图象取值.【详解】,因为正弦函数对任意(i,j=1,2,3,…,n),都有,要使n取得最小值,尽可能多让(i=1,2,3,…,n)取得最高点,因为,所以要使得满足条件的n最小,如图所示则需取,,,,,,即取,,,,,,即.故选:D【点睛】本题主要考查正弦函数的图象,还考查了数形结合的思想方法,属于中档题.3、A【解析】所求的全面积之比为:,故选A.4、B【解析】

判断函数的单调性,利用f(﹣1)与f(1)函数值的大小,通过零点存在性定理判断即可【详解】函数f(x)=2x+3x是增函数,f(﹣1)=<1,f(1)=1+1=1>1,可得f(﹣1)f(1)<1.由零点存在性定理可知:函数f(x)=2x+3x的零点所在的一个区间(﹣1,1).故选:B.【点睛】本题考查零点存在性定理的应用,考查计算能力,注意函数的单调性的判断.5、A【解析】

由点到直线距离公式计算.【详解】.故选:A.【点睛】本题考查点到直线的距离公式,掌握距离公式是解题基础.点到直线的距离为.6、B【解析】

先求侧面三角形的斜高,再求该正四棱锥的全面积.【详解】由题得侧面三角形的斜高为,所以该四棱锥的全面积为.故选B【点睛】本题主要考查几何体的边长的计算和全面积的求法,意在考查学生对这些知识的理解掌握水平和分析推理能力.7、C【解析】

根据特殊值排除A,B选项,根据单调性选出C,D选项中的正确选项.【详解】当时,,故A,B两个选项错误.由于,故,所以C选项正确,D选项错误.故本小题选C.【点睛】本小题主要考查三角函数值,考查对数函数和指数函数的单调性,属于基础题.8、B【解析】

根据古典概型的概率计算公式,先求出基本事件总数,正、副组长均由男生担任包含的基本事件总数,由此能求出正、副组长均由男生担任的概率.【详解】某小组由2名男生、2名女生组成,现从中选出2名分别担任正、副组长,基本事件总数,正、副组长均由男生担任包含的基本事件总数,正、副组长均由男生担任的概率为.故选.【点睛】本题主要考查古典概型的概率求法。9、C【解析】

由题意易得数列的公比代入求和公式计算可得.【详解】设等比数列公比为q,,则,解得,,故选:C.【点睛】本题考查等比数列的求和公式和通项公式,求出数列的公比是解决问题的关键,属基础题.10、D【解析】

由二倍角公式可得,即,从而分情况求解.【详解】易得,或.

由得.

由,得.故选:D【点睛】本题考查二倍角公式的应用以及有关的二次齐次式子求值,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

利用三角形的面积公式求出的值,结合角为锐角,可得出角的弧度数.【详解】由三角形的面积公式可知,的面积为,得,为锐角,因此,的弧度数为,故答案为.【点睛】本题考查三角形面积公式的应用,考查运算求解能力,属于基础题.12、.【解析】

利用余弦定理求出的值,结合角的取值范围得出角的值.【详解】由余弦定理得,,,故答案为.【点睛】本题考查余弦定理的应用和反三角函数,解题时要充分结合元素类型选择正弦定理和余弦定理解三角形,考查计算能力,属于中等题.13、【解析】

先求得,然后根据中位线的性质,求得.【详解】依题意,由于分别是线段的中点,故.【点睛】本小题主要考查平面向量减法运算,考查三角形中位线,属于基础题.14、20【解析】

先由条件求出,算出,然后利用二次函数的知识求出即可【详解】设的公差为,由题意得即,①即,②由①②联立得所以故当时,取得最大值400故答案为:20【点睛】等差数列的是关于的二次函数,但要注意只能取正整数.15、1【解析】

由正数a、b、c依次成等差数列,则,则,再结合基本不等式求最值即可.【详解】解:由正数a、b、c依次成等差数列,则,则,当且仅当,即时取等号,故答案为:1.【点睛】本题考查了等差中项的运算,重点考查了基本不等式的应用,属基础题.16、【解析】

根据自变量的取值范围,利用作差法即可比较大小.【详解】,,,所以当时,所以,即,故答案为:.【点睛】本题考查了作差法比较整式的大小,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ)0.006;(Ⅱ);(Ⅲ)【解析】

试题分析:(Ⅰ)在频率分布直方图中,由频率总和即所有矩形面积之和为,可求;(Ⅱ)在频率分布直方图中先求出50名受访职工评分不低于80的频率为,由频率与概率关系可得该部门评分不低于80的概率的估计值为;(Ⅲ)受访职工评分在[50,60)的有3人,记为,受访职工评分在[40,50)的有2人,记为,列出从这5人中选出两人所有基本事件,即可求相应的概率.试题解析:(Ⅰ)因为,所以……..4分)(Ⅱ)由所给频率分布直方图知,50名受访职工评分不低于80的频率为,所以该企业职工对该部门评分不低于80的概率的估计值为………8分(Ⅲ)受访职工评分在[50,60)的有:50×0.006×10=3(人),即为;受访职工评分在[40,50)的有:50×0.004×40=2(人),即为.从这5名受访职工中随机抽取2人,所有可能的结果共有10种,它们是又因为所抽取2人的评分都在[40,50)的结果有1种,即,故所求的概率为考点:1.频率分布直方图;2.概率和频率的关系;3.古典概型.【名师点睛】本题考查频率分布直方图、概率与频率关系、古典概型,属中档题;利用频率分布直方图解题的时,注意其表达的意义,同时要理解频率是概率的估计值这一基础知识;在利用古典概型解题时,要注意列出所有的基本事件,千万不可出现重、漏的情况.18、()【解析】

先化简函数得到,再利用复合函数单调性原则结合整体法求单调区间即可.【详解】,令,则,因为是的一次函数,且在定义域上单调递增,所以要求的单调递增区间,即求的单调递减区间,即(),∴(),即(),∴函数的单调递增区间为().【点睛】本题考查求复合型三角函数的单调区间,答题时注意,复合函数的单调性遵循“同增异减”法则.19、【解析】

计算出由三点共线解出即可.【详解】解:,∵三点共线,∴,∴【点睛】本题考查3点共线的向量表示,属于基础题.20、答案不唯一,见解析【解析】

首先将方程化简为,再画出的图像,根据和交点的个数即可求出方程根的个数.【详解】由题知:,,.令,,图像如图所示:当或,即或时,无解,即方程无解.当,即时,得到,则方程有两个解.当,即时,得到在有两个解,则方程有四个解.当,即时,得到或,则方程有四个解.当,即时,得到在有一个解,则方程有两个解.当,即时,得到,则方程有一个解.综上所述:当或时,即方程无解,当时,方程有一个解.当或时,方程有两个解.当时,方程有四个解.【点睛】本题主要考查函数的零点问题,同时考查了分类讨论的思想,数形结合为解题的关键,属于难题.21

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论