山西省霍州市煤电第一中学2025届高一数学第二学期期末学业质量监测试题含解析_第1页
山西省霍州市煤电第一中学2025届高一数学第二学期期末学业质量监测试题含解析_第2页
山西省霍州市煤电第一中学2025届高一数学第二学期期末学业质量监测试题含解析_第3页
山西省霍州市煤电第一中学2025届高一数学第二学期期末学业质量监测试题含解析_第4页
山西省霍州市煤电第一中学2025届高一数学第二学期期末学业质量监测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山西省霍州市煤电第一中学2025届高一数学第二学期期末学业质量监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数的定义域为,当时,,且对任意的实数,等式恒成立,若数列满足,且,则的值为()A.4037 B.4038 C.4027 D.40282.的值等于()A. B. C. D.3.下列正确的是()A.若a,b∈R,则B.若x<0,则x+≥-2=-4C.若ab≠0,则D.若x<0,则2x+2-x>24.已知的内角的对边分别为,若,则的形状为()A.等腰三角形 B.直角三角形C.等腰直角三角形 D.等腰或直角三角形5.已知数列满足,,且,则A.4 B.5 C.6 D.86.计算的值为()A. B. C. D.7.某小组共有5名学生,其中男生3名,女生2名,现选举2名代表,则恰有1名女生当选的概率为()A. B. C. D.8.已知两条不重合的直线和,两个不重合的平面和,下列四个说法:①若,,,则;②若,,则;③若,,,,则;④若,,,,则.其中所有正确的序号为()A.②④ B.③④ C.④ D.①③9.“()”是“函数是奇函数”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件10.甲、乙两人下棋,甲获胜的概率为40%,甲不输的概率为90%,则甲、乙下成平局的概率为()A.50% B.30% C.10% D.60%二、填空题:本大题共6小题,每小题5分,共30分。11.已知,,且,则的最小值为________.12.已知数列满足,,则______.13.已知满足约束条件,则的最大值为__________.14.设数列的前项和,若,,则的通项公式为_____.15.如图,曲线上的点与轴的正半轴上的点及原点构成一系列正三角形,,,设正三角形的边长为(记为),.数列的通项公式=______.16.已知一组数据,,,的方差为,则这组数据,,,的方差为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在中,内角、、所对的边分别为,,,且满足.(1)求角的大小;(2)若,是方程的两根,求的值.18.已知函数,其中数列是公比为的等比数列,数列是公差为的等差数列.(1)若,,分别写出数列和数列的通项公式;(2)若是奇函数,且,求;(3)若函数的图像关于点对称,且当时,函数取得最小值,求的最小值.19.已知数列满足且,设,.(1)求;(2)求的通项公式;(3)求.20.如图,在三棱柱中,侧面是边长为2的正方形,点是棱的中点.(1)证明:平面.(2)若三棱锥的体积为4,求点到平面的距离.21.设数列的前项和为,点均在函数的图像上.(Ⅰ)求数列的通项公式;(Ⅱ)设,是数列的前项和,求使得对所有都成立的最小正整数.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

由,对任意的实数,等式恒成立,且,得到an+1=an+2,由等差数列的定义求得结果.【详解】∵,∴f(an+1)f(﹣2﹣an)=1,∵f(x)•f(y)=f(x+y)恒成立,∴令x=﹣1,y=0,则f(﹣1)•f(0)=f(﹣1),∵当x<0时,f(x)>1,∴f(﹣1)≠0,则f(0)=1,则f(an+1)f(﹣2﹣an)=1,等价为f(an+1)f(﹣2﹣an)=f(0),即f(an+1﹣2﹣an)=f(0),则an+1﹣2﹣an=0,∴an+1﹣an=2.∴数列{an}是以1为首项,以2为公差的等差数列,首项a1=f(0)=1,∴an=1+2(n﹣1)=2n﹣1,∴=2×2019﹣1=4037.故选:A【点睛】本题主要考查数列与函数的综合运用,根据抽象函数的关系结合等差数列的通项公式建立方程是解决本题的关键,属于中档题.2、A【解析】=,选A.3、D【解析】对于A,当ab<0时不成立;对于B,若x<0,则x+=-≤-2=-4,当且仅当x=-2时,等号成立,因此B选项不成立;对于C,取a=-1,b=-2,+=-<a+b=-3,所以C选项不成立;对于D,若x<0,则2x+2-x>2成立.故选D.4、A【解析】中,,所以.由正弦定理得:.所以.所以,即因为为的内角,所以所以为等腰三角形.故选A.5、B【解析】

利用,,依次求,观察归纳出通项公式,从而求出的值.【详解】∵数列满足,,,∴,∴,∴,,∴,∴,……,∵,,,,…….,由此归纳猜想,∴.故选B.【点睛】本题考查了一个教复杂的递推关系,本题的难点在于数列的项位于指数位置,不易化简和转化,一般的求通项方法无法解决,当遇见这种情况时一般我们就可以用“归纳”的方法处理,即通过求几项,然后观察规律进而得到结论.6、D【解析】

直接由二倍角的余弦公式,即可得解.【详解】由二倍角公式得:,故选D.【点睛】本题考查了二倍角的余弦公式,属于基础题.7、B【解析】

记三名男生为,两名女生为,分别列举出基本事件,得出基本事件总数和恰有1名女生当选包含的基本事件个数,即可得解.【详解】记三名男生为,两名女生为,任选2名所有可能情况为,共10种,恰有一名女生的情况为,共6种,所以恰有1名女生当选的概率为.故选:B【点睛】此题考查根据古典概型求概率,关键在于准确计算出基本事件总数,和某一事件包含的基本事件个数.8、C【解析】

根据线面平行,面面平行,线面垂直,面面垂直的性质定理,判定定理等有关结论,逐项判断出各项的真假,即可求出.【详解】对①,若,,,则或和相交,所以①错误;对②,若,,则或,所以②错误;对③,根据面面平行的判定定理可知,只有,,,,且和相交,则,所以③错误;对④,根据面面垂直的性质定理可知,④正确.故选:C.【点睛】本题主要考查有关线面平行,面面平行,线面垂直,面面垂直的命题的判断,意在考查线面平行,面面平行,线面垂直,面面垂直的性质定理,判定定理等有关结论的理解和应用,属于基础题.9、C【解析】若,则,函数为奇函数,所以充分性成立;反之,若函数是奇函数,则,即,因此必要性也是成立,所以“”是“函数是奇函数”充要条件,故选C.10、A【解析】

甲不输的概率等于甲获胜或者平局的概率相加,计算得到答案.【详解】甲不输的概率等于甲获胜或者平局的概率相加甲、乙下成平局的概率为:故答案选A【点睛】本题考查了互斥事件的概率,意在考查学生对于概率的理解.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

由,可得,然后利用基本不等式可求出最小值.【详解】因为,所以,当且仅当,时取等号.【点睛】利用基本不等式求最值必须具备三个条件:①各项都是正数;②和(或积)为定值;③等号取得的条件.12、1023【解析】

根据等比数列的定义以及前项和公式即可.【详解】因为所以,所以为首先为1公比为2的等比数列,所以【点睛】本题主要考查了等比数列的前项和:属于基础题.13、57【解析】

作出不等式组所表示的可行域,平移直线,观察直线在轴的截距取最大值时的最优解,再将最优解代入目标函数可得出目标函数的最大值.【详解】作出不等式组所表示的可行域如下图所示:平移直线,当直线经过可行域的顶点时,该直线在轴上的截距取最大值,此时,取最大值,即,故答案为.【点睛】本题考查简单的线性规划问题,考查线性目标函数的最值问题,一般利用平移直线结合在坐标轴上的截距取最值时,找最优解求解,考查数形结合数学思想,属于中等题.14、【解析】

已知求,通常分进行求解即可。【详解】时,,化为:.时,,解得.不满足上式.∴数列在时成等比数列.∴时,.∴.故答案为:.【点睛】本题主要考查了数列通项式的求法:求数列通项式常用的方法有累加法、定义法、配凑法、累乘法等。15、【解析】

先得出直线的方程为,与曲线的方程联立得出的坐标,可得出,并设,根据题中条件找出数列的递推关系式,结合递推关系式选择作差法求出数列的通项公式,即利用求出数列的通项公式。【详解】设数列的前项和为,则点的坐标为,易知直线的方程为,与曲线的方程联立,解得,;当时,点、,所以,点,直线的斜率为,则,即,等式两边平方并整理得,可得,以上两式相减得,即,易知,所以,即,所以,数列是等差数列,且首项为,公差也为,因此,.故答案为:。【点睛】本题考查数列通项的求解,根据已知条件找出数列的递推关系是解题的关键,在求通项公式时需结合递推公式的结构选择合适的方法求解数列的通项公式,考查分析问题的能力,属于难题。16、【解析】

利用方差的性质直接求解.【详解】一组数据,,,的方差为5,这组数据,,,的方差为:.【点睛】本题考查方差的性质应用。若的方差为,则的方差为。三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】

(1)由,可得:,再用正弦定理可得:,从而求得的值;(2)根据题意由韦达定理和余弦定理列出关于的方程求解即可.【详解】(1)由,得:,可得:,得.由正弦定理有:,由,有,故,可得,由,有.(2)由,是方程的两根,得,利用余弦定理得而,可得.【点睛】本题考查了三角形的正余弦定理的应用,化简与求值,属于基础题.18、(1),;(2);(3)1【解析】

(1)根据等差数列、等比数列的通项公式即可求解;(2)根据奇函数的定义得出,化简得,解方程可得(3)将化成的形式,依题意有,从而得到,因为当时,函数取得最小值,所以,两式相减即可求解.【详解】(1)由等差数列、等比数列的通项公式可得,;(2)因为,所以即,所以又由,得(3)记,则,其中;因为的图像关于点对称,所以①因为当时,函数取得最小值,所以②②-①得,因为,当,时,取得最小值为0【点睛】本题主要考查了等差数列、等比数列的通项公式的求法、三角函数的化简以及正弦型函数图像的性质,考查较全面,属于难题.19、(1),,,;(1),;(3).【解析】

(1)依次代入计算,可求得;(1)归纳出,并用数学归纳法证明;(3)用裂项相消法求和,然后求极限.【详解】(1)∵且,∴,即,,,,,,,,,∴;(1)由(1)归纳:,下面用数学归纳法证明:1°n=1,n=1时,由(1)知成立,1°假设n=k(k>1)时,结论成立,即bk=1k1,则n=k+1时,ak=bk-k=1k1-k,,ak+1=(1k+1)(k+1),∴bk+1=ak+1+(k+1)=(1k+1)(k+1)+(k+1)=1(k+1)1,∴n=k+1时结论成立,∴对所有正整数n,bn=1n1.(3)由(1)知n1时,,∴,.【点睛】本题考查用归纳法求数列的通项公式,考查用裂项相消法求数列的和,考查数列的极限.在求数列通项公式时,可以根据已知的递推关系求出数列的前几项,然后归纳出通项公式,并用数学归纳法证明,这对学生的归纳推理能力有一定的要求,这也就是我们平常所学的从特殊到一般的推理方法.20、(1)见解析(2)6【解析】

(1)由平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行可判定平面;(2)由三棱锥的体积为4,可知四棱锥的体积,再由三棱锥的体积公式即可求得高.【详解】(1)证明:连接,与交于点,连接.因

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论