版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海师大学附中2025届数学高一下期末检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数,则A.f(x)的最小正周期为π B.f(x)为偶函数C.f(x)的图象关于对称 D.为奇函数2.已知数列2008,2009,1,-2008,-2009…这个数列的特点是从第二项起,每一项都等于它的前后两项之和,则这个数列的前2019项之和S2019A.1 B.2010 C.4018 D.40173.执行下面的程序框图,则输出的的值为()A.10 B.34 C.36 D.1544.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积为()A. B.C. D.5.设等比数列{an}的前n项和为Sn,若S6A.73 B.2 C.86.经过平面α外两点,作与α平行的平面,则这样的平面可以作()A.1个或2个B.0个或1个C.1个D.0个7.的直观图如图所示,其中,则在原图中边的长为()A. B. C.2 D.8.设,是平面内一组基底,若,,,则以下不正确的是()A. B. C. D.9.已知数列的通项公式为,则72是这个数列的()A.第7项 B.第8项 C.第9项 D.第10项10.函数的图象向右平移个单位后,得到函数的图象,若为偶函数,则的值为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知角满足且,则角是第________象限的角.12.公比为2的等比数列的各项都是正数,且,则的值为___________13.已知数列的前n项和为,,且(),记(),若对恒成立,则的最小值为__.14.如图,货轮在海上以的速度沿着方位角(从指北方向顺时针转到目标方向线的水平角)为150°的方向航行.为了确定船位,在点B观察灯塔A的方位角是120°,航行半小时后到达C点,观察灯塔A的方位角是75°,则货轮到达C点时与灯塔A的距离为______nmile15.函数的初相是__________.16.设向量满足,,,.若,则的最大值是________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,.(1)求的值;(2)求的值.18.如图,已知平面,为矩形,分别为的中点,.(1)求证:平面;(2)求证:面平面;(3)求点到平面的距离.19.有同一型号的汽车100辆,为了解这种汽车每耗油所行路程的情况,现从中随机地抽出10辆,在同一条件下进行耗油所行路程的试验,得到如下样本数据(单位:km):13.7,12.7,14.4,13.8,13.3,12.5,13.5,13.6,13.1,13.4,并分组如下:(1)完成上面的频率分布表;(2)根据上表,在坐标系中画出频率分布直方图.20.在四棱锥P-ABCD中,四边形ABCD是正方形,PD⊥平面ABCD,且PD=AD=4,点E为线段PA的中点.(1)求证:PC∥平面BDE;(2)求三棱锥E-BCD的体积.21.如下图,长方体ABCD-A1B1C1D1中,(1)当点E在AB上移动时,三棱锥D-D(2)当点E在AB上移动时,是否始终有D1
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】对于函数,它的最小正周期为=4π,故A选项错误;函数f(x)不满足f(–x)=f(x),故f(x)不是偶函数,故B选项错误;令x=,可得f(x)=sin0=0,故f(x)的图象关于对称,C正确;由于f(x–)=sin(x–)=–sin(x)=–cos(x)为偶函数,故D选项错误,故选C.2、C【解析】
计算数列的前几项,观察数列是一个周期为6的数列,计算得到答案.【详解】从第二项起,每一项都等于它的前后两项之和计算数列前几项得:2008,2009,1,-2008,-2009,-1,2008,2009,1,-2008…观察知:数列是一个周期为6的数列每个周期和为0S故答案为C【点睛】本题考查了数列的前N项和,观察数列的周期是解题的关键.3、B【解析】试题分析:第一次循环:第二次循环:第三次循环:第四次循环:结束循环,输出,选B.考点:循环结构流程图【名师点睛】算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.4、C【解析】
先通过三视图找到几何体原图,再求几何体的体积得解.【详解】由题得该几何体是一个边长为4的正方体挖去一个圆锥(圆锥底面在正方体上表面上,圆锥顶部朝下),所以几何体体积为.故选:C【点睛】本题主要考查三视图还原几何体原图,考查组合体体积的计算,意在考查学生对这些知识的理解掌握水平.5、A【解析】解:因为等比数列{an}的前n项和为Sn,则Sn,S2n-Sn,S3n-S2n成等比,(Sn≠0)所以S66、B【解析】若平面α外的两点所确定的直线与平面α平行,则过该直线与平面α平行的平面有且只有一个;若平面α外的两点所确定的直线与平面α相交,则过该直线的平面与平面α平行的平面不存在;故选B.7、D【解析】
由直观图确定原图形中三角形边的关系及长度,然后计算.【详解】在原图形中,,,∴.故选:D.【点睛】本题考查直观图,考查由直观图还原原平面图形.掌握斜二测画法的规则是解题关键.8、D【解析】
由已知及平面向量基本定理可得:,问题得解.【详解】因为,是平面内一组基底,且,由平面向量基本定理可得:,所以,所以D不正确故选D【点睛】本题主要考查了平面向量基本定理的应用,还考查了同角三角函数的基本关系,属于较易题.9、B【解析】
根据数列的通项公式,令,求得的值,即可得到答案.【详解】由题意,数列的通项公式为,令,即,解得或(不合题意),所以是数列的第8项,故选B.【点睛】本题主要考查了数列的通项公式的应用,着重考查了运算与求解能力,属于基础题.10、B【解析】f(x)=sin2x﹣cos2x=2sin(2x﹣)的图象向左平移φ(0<φ<)个单位,得到g(x)=2sin(2x-2φ﹣).为偶函数,故得到,故得到2sin(-2φ﹣)=-2或2,.因为,故得到,k=-1,的值为.故答案为B.二、填空题:本大题共6小题,每小题5分,共30分。11、三【解析】
根据三角函数在各个象限的符号,确定所在象限.【详解】由于,所以为第三、第四象限角;由于,所以为第二、第三象限角.故为第三象限角.故答案为:三【点睛】本小题主要考查三角函数在各个象限的符号,属于基础题.12、2【解析】
根据等比数列的性质与基本量法求解即可.【详解】由题,因为,又等比数列的各项都是正数,故.故.故答案为:【点睛】本题主要考查了等比数列的等积性与各项之间的关系.属于基础题.13、【解析】
,即为首项为,公差为的等差数列,,,,由得,因为或时,有最大值,,即的最小值为,故答案为.【方法点晴】裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,掌握一些常见的裂项技巧:①;②;③;④;此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.14、【解析】
通过方位角定义,求出,,利用正弦定理即可得到答案.【详解】根据题意,可知,,,因此可得,由正弦定理得:,求得,即答案为.【点睛】本题主要考查正弦定理的实际应用,难度不大.15、【解析】
根据函数的解析式即可求出函数的初相.【详解】,初相为.故答案为:【点睛】本题主要考查的物理意义,属于简单题.16、【解析】
令,计算出模的最大值即可,当与同向时的模最大.【详解】令,则,因为,所以当,,因此当与同向时的模最大,【点睛】本题主要考查了向量模的计算,以及二次函数在给定区间上的最值.整体换元的思想,属于较的难题,在解二次函数的问题时往往结合图像、开口、对称轴等进行分析.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】
(1)利用同角三角函数的平方关系可求出的值,然后再利用同角三角函数的商数关系可求出的值;(2)在分式分子和分母中同时除以,将所求分式转化为含的分式求解,代值计算即可.【详解】(1),,因此,;(2)原式.【点睛】本题考查同角三角函数的商数关系求值,同时也考查了弦化切思想的应用,解题时要熟悉弦化切所适用的基本情形,考查计算能力,属于基础题.18、(1)证明见解析;(2)证明见解析;(3).【解析】
(1)利用线面平行的判定定理,寻找面PAD内的一条直线平行于MN,即可证出;(2)先证出一条直线垂直于面PCD,依据第一问结论知,MN也垂直于面PCD,利用面面垂直的判定定理即可证出;(3)依据等积法,即可求出点到平面的距离.【详解】证明:(1)取中点为,连接分别为的中点,是平行四边形,平面,平面,∴平面证明:(2)因为平面,所以,而,面PAD,而面,所以,由,为的终点,所以由于平面,又由(1)知,平面,平面,∴平面平面解:(3),,,则点到平面的距离为(也可构造三棱锥)【点睛】本题主要考查线面平行、面面垂直的判定定理以及等积法求点到面的距离,意在考查学生的直观想象、逻辑推理、数学运算能力.19、(1)见解析;(2)见解析【解析】
(1)通过所给数据算出频数和频率值,并填入表格中;(2)计算每组数中的频率除以组距的值,再画出直方图.【详解】(1)频率分布表如下:分组频数频率[12.45,12.95)20.2[12.95,13.45)30.3[13.45,13.95)40.4[13.95,14.45)10.1合计101.0(2)频率分布直方图如图所示:【点睛】本题考查频率分布表和频率分布直方图的简单应用,考查基本的数据处理能力.20、(1)见解析(2)16【解析】
(1)证明EO∥PC得到PC∥平面BDE.(2)先证明EF就是三棱锥E-BCD的高,再利用体积公式得到三棱锥E-BCD的体积.【详解】(1)证明:连结AC交BD于O,连结EO.∵四边形ABCD是正方形,在ΔPAC中,O为AC中点,又∵E为PA中点∴EO∥PC.又∵PC⊄平面BDE,EO⊂平面BDE.∴PC∥平面BDE
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年中国消毒机市场调查研究报告
- 2024至2030年中国聚氨酯外墙漆数据监测研究报告
- 2024年球铁柴油机飞轮项目可行性研究报告
- 2024年扩口反应釜项目可行性研究报告
- 2024年反转出料砼项目可行性研究报告
- 水稻育种课程设计
- 中国防水涂料行业营销态势与竞争动态分析研究报告(2024-2030版)
- 中国薄膜热敏打印头应用潜力与未来趋势预测研究报告(2024-2030版)
- 2024年中国木质地板市场调查研究报告
- 中国结晶硅行业发展状况及投资趋势预测研究报告(2024-2030版)
- 上册文字表达式-符号表达式-化学式
- 专业技术职称等级分类
- 江苏省城市设计编制导则
- GB_T 28581-2021 通用仓库及库区规划设计参数(高清版)
- 2022年铁路货运员考试题库(汇总版)
- 《基坑支护》PPT课件.ppt
- 工程委外维保流程ppt课件
- 探究如何提高机电工程施工质量的方法
- 仓库分区及状态标识
- 浅析微博营销对消费者购买行为的影响
- 超高层建筑电气设计要点分析
评论
0/150
提交评论