北京八中2025届高一数学第二学期期末考试试题含解析_第1页
北京八中2025届高一数学第二学期期末考试试题含解析_第2页
北京八中2025届高一数学第二学期期末考试试题含解析_第3页
北京八中2025届高一数学第二学期期末考试试题含解析_第4页
北京八中2025届高一数学第二学期期末考试试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北京八中2025届高一数学第二学期期末考试试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,,三点,则的形状是()A.钝角三角形 B.直角三角形C.锐角三角形 D.等腰直角三角形2.的内角的对边分别为,若,则()A. B. C. D.3.已知向量,满足,,且在方向上的投影是-1,则实数()A.1 B.-1 C.2 D.-24.已知,,那么是()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.执行如图所示的程序框图,若输入,则输出()A.5 B.8 C.13 D.216.某几何体的三视图如图所示,则该几何体的体积为()A.6 B.4C. D.7.已知数列的通项公式为,则72是这个数列的()A.第7项 B.第8项 C.第9项 D.第10项8.已知等差数列中,则()A.10 B.16 C.20 D.249.在中,若,且,则的形状为()A.直角三角形 B.等腰直角三角形C.正三角形或直角三角形 D.正三角形10.若关于x的一元二次不等式ax2+2ax+1>0A.(-∞,0)∪(1,+∞) B.(0,1) C.(-∞,0]∪(1,+∞)二、填空题:本大题共6小题,每小题5分,共30分。11.设,其中,则的值为________.12.设等比数列满足a1+a3=10,a2+a4=5,则a1a2…an的最大值为.13.秦九韶是我国南宋著名数学家,在他的著作《数书九章》中有己知三边求三角形面积的方法:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上以小斜幂乘大斜幂减上,余四约之,为实一为从陽,开平方得积.”如果把以上这段文字写成公式就是,其中是的内角的对边为.若,且,则面积的最大值为________.14.圆上的点到直线4x+3y-12=0的距离的最小值是15.设变量x、y满足约束条件,则目标函数的最大值为_______.16.已知数列的通项公式,那么使得其前项和大于7.999的的最小值为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某地区某农产品的销售量与年份有关,下表是近五年的部分统计数据:年份20102012201420162018销售量(吨)114115116116114用所给数据求年销售量(吨)与年份之间的回归直线方程,并根据所求出的直线方程预测该地区2019年该农产品的销售量.参考公式:.18.已知:三点,其中.(1)若三点在同一条直线上,求的值;(2)当时,求.19.已知是同一平面内的三个向量,其中为单位向量.(Ⅰ)若//,求的坐标;(Ⅱ)若与垂直,求与的夹角.20.已知公差为正数的等差数列,,且成等比数列.(1)求;(2)若,求数列的前项的和.21.已知函数的部分图象如图所示.(1)求与的值;(2)设的三个角、、所对的边依次为、、,如果,且,试求的取值范围;(3)求函数的最大值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

计算三角形三边长度,通过边关系进行判断.【详解】由两点之间的距离公式可得:,,,因为,且故该三角形为等腰直角三角形.故选:D.【点睛】本题考查两点之间的距离公式,属基础题.2、B【解析】

首先通过正弦定理将边化角,于是求得,于是得到答案.【详解】根据正弦定理得:,即,而,所以,又为三角形内角,所以,故选B.【点睛】本题主要考查正弦定理的运用,难度不大.3、A【解析】

由投影的定义计算.【详解】由题意,解得.故选:A.【点睛】本题考查向量数量积的几何意义,掌握向量投影的定义是解题关键.4、C【解析】

根据,,可判断所在象限.【详解】,在三四象限.,在一三象限,故在第三象限答案为C【点睛】本题考查了三角函数在每个象限的正负,属于基础题型.5、C【解析】

通过程序一步步分析得到结果,从而得到输出结果.【详解】开始:,执行程序:;;;;,执行“否”,输出的值为13,故选C.【点睛】本题主要考查算法框图的输出结果,意在考查学生的分析能力及计算能力,难度不大.6、A【解析】该立方体是正方体,切掉一个三棱柱,所以体积为,故选A。点睛:本题考查三视图还原,并求体积。此类题关键就是三视图的还原,还原过程中,本题采取切割法处理,有图可知,该立方体应该是正方体进行切割产生的,所以我们在画图的过程在,对正方体进行切割比较即可。7、B【解析】

根据数列的通项公式,令,求得的值,即可得到答案.【详解】由题意,数列的通项公式为,令,即,解得或(不合题意),所以是数列的第8项,故选B.【点睛】本题主要考查了数列的通项公式的应用,着重考查了运算与求解能力,属于基础题.8、C【解析】

根据等差数列性质得到,再计算得到答案.【详解】已知等差数列中,故答案选C【点睛】本题考查了等差数列的性质,是数列的常考题型.9、D【解析】

由两角和的正切公式求得,从而得,由二倍角公式求得,再求得,注意检验符合题意,可判断三角形形状.【详解】,∴,∴,由,即.∴或.当时,,无意义.当时,,此时为正三角形.故选:D.【点睛】本题考查三角形形状的判断,考查两角和的正切公式和二倍角公式,根据三角公式求出角是解题的基本方法.10、B【解析】

由题意,得出a≠0,再分析不等式开口和判别式,可得结果.【详解】由题,因为为一元二次不等式,所以a≠0又因为ax所以a>0Δ=故选B【点睛】本题考查了一元二次不等式解法,利用二次函数图形解题是关键,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

由两角差的正弦公式以及诱导公式,即可求出的值.【详解】,所以,因为,故.【点睛】本题主要考查两角差的正弦公式的逆用以及诱导公式的应用.12、【解析】试题分析:设等比数列的公比为,由得,,解得.所以,于是当或时,取得最大值.考点:等比数列及其应用13、【解析】

根据正弦定理和余弦定理,由可得,再由及函数求最值的知识,即可求解.【详解】,又,,时,面积的最大值为.故答案为:【点睛】本题主要考查了正弦定理、余弦定理在解三角形中的应用,考查了理解辨析能力与运算求解能力,属于中档题.14、【解析】

计算出圆心到直线的距离,减去半径,求得圆上的点到直线的最小距离.【详解】圆的圆心为,半径.圆心到直线的距离为,故最小距离为.【点睛】本小题主要考查圆上的点到直线距离最小值的求法,考查点到直线距离公式,属于基础题.15、3【解析】

可通过限定条件作出对应的平面区域图,再根据目标函数特点进行求值【详解】可行域如图所示;则可化为,由图象可知,当过点时,有最大值,则其最大值为:故答案为:3.【点睛】线性规划问题关键是能正确画出可行域,目标函数可由几何意义确定具体含义(最值或斜率)16、1【解析】

直接利用数列的通项公式,建立不等式,解不等式求出结果.【详解】解:数列的通项公式,则:,所以:当时,即:,当时,成立,即:的最小值为1.故答案为:1【点睛】本题考查的知识要点:数列的通项公式的求法及应用,主要考查学生的运算能力和转化能力,属于基础题型.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、;115.25吨【解析】

由表格中的数据先求出,再根据公式求得与的值,得到线性回归方程,取即可求得2019年该农产品销售量的预测值.【详解】由表中数据可得:,,∴,,∴所求回归直线方程为:,由此可以预测2019年该农产品的销售量为:吨.【点睛】本题考查线性回归方程的求法,考查计算能力,难度不大.18、(1)(2)【解析】

(1)利用共线向量的特点求解m;(2)先利用求解m,再求解.【详解】(1)依题有:,共线.(2)由得:又【点睛】本题主要考查平面向量的应用,利用共线向量可以证明三点共线问题,利用向量可以解决长度问题.19、(Ⅰ)或(Ⅱ)【解析】

(Ⅰ)设,根据向量的模和共线向量的条件,列出方程组,即可求解.(Ⅱ)由,根据向量的运算求得,再利用向量的夹角公式,即可求解.【详解】(Ⅰ)设由题则有解得或,.(Ⅱ)由题即,.【点睛】本题主要考查了向量的坐标运算,共线向量的条件及向量的夹角公式的应用,其中解答中熟记向量的基本概念和运算公式,合理准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.20、(1);(2)【解析】

(1)直接利用等差数列的性质的应用求出数列的公差,进一步求出数列的通项公式.(2)利用(1)的通项公式,进一步利用错位相减法求出数列的和.【详解】(1)设公差为,由,,成等比数列,得,结合,解得,或(舍去),∴.(2)∴,∴,①,②,由①②可得:∴.【点睛】本题考查的知识要点:数列的通项公式的求法及应用,错位相减法在数列求和中的应用,主要考察学生的运算能力和转换能力,属于基础题型.21、(1),;(2);(3).【解析】

(1)由图象有,可得的值,然后根据五点法作图可得,进而求出(2)根据,可得,然后由行列式求出,再由正弦定理转化为,根据的范围求出的范围(3)将化简到最简形式

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论