2025届安徽省蚌埠市田家炳中学、五中数学高一下期末复习检测试题含解析_第1页
2025届安徽省蚌埠市田家炳中学、五中数学高一下期末复习检测试题含解析_第2页
2025届安徽省蚌埠市田家炳中学、五中数学高一下期末复习检测试题含解析_第3页
2025届安徽省蚌埠市田家炳中学、五中数学高一下期末复习检测试题含解析_第4页
2025届安徽省蚌埠市田家炳中学、五中数学高一下期末复习检测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届安徽省蚌埠市田家炳中学、五中数学高一下期末复习检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设是平面内的一组基底,则下面四组向量中,能作为基底的是()A.与 B.与C.与 D.与2.过点且与原点距离最大的直线方程是()A. B.C. D.3.已知正方体ABCD-ABCD中,E、F分别为BB、CC的中点,那么异面直线AE与DF所成角的余弦值为()A. B.C. D.4.已知等差数列前n项的和为,,,则()A.25 B.26 C.27 D.285.已知向量,.且,则()A.2 B. C. D.6.甲、乙两人下棋,甲获胜的概率为40%,甲不输的概率为90%,则甲、乙下成平局的概率为()A.50% B.30% C.10% D.60%7.在中,角,,所对的边为,,,且为锐角,若,,,则()A. B. C. D.8.要从已编号(1~50)的50枚最新研制的某型导弹中随机抽取5枚来进行发射试验,用每部分选取的号码间隔一样的系统抽样方法确定所选取的5枚导弹的编号可能是()A.5,10,15,20,25 B.3,13,23,33,43C.1,2,3,4,5 D.2,4,8,16,329.已知实数,满足,,且,,成等比数列,则有()A.最大值 B.最大值 C.最小值 D.最小值10.直线x+2y﹣3=0与直线2x+ay﹣1=0垂直,则a的值为()A.﹣1 B.4 C.1 D.﹣4二、填空题:本大题共6小题,每小题5分,共30分。11.设,则等于________.12.若直线:与直线的交点位于第一象限,则直线的倾斜角的取值范围是___________.13.函数的最小正周期是________14.已知关于两个随机变量的一组数据如下表所示,且成线性相关,其回归直线方程为,则当变量时,变量的预测值应该是_________.23456467101315.若数列满足,,则数列的通项公式______.16.已知数列中,其前项和为,,则_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,正三棱柱的各棱长均为,为棱的中点,求异面直线与所成角的余弦值.18.如图,四棱锥中,底面为矩形,面,为的中点.(1)证明:平面;(2)设,,三棱锥的体积,求A到平面PBC的距离.19.某桶装水经营部每天的房租、人员工资等固定成本为200元,每桶水的进价为3元,根据以往的经验售价为4元时,可卖出280桶;若销售单价每增加1元,日均销售量就减少40桶,则这个经营部怎样定价才能获得最大利润?最大利润是多少?20.为推动文明城市创建,提升城市整体形象,2018年12月30日盐城市人民政府出台了《盐城市停车管理办法》,2019年3月1日起施行.这项工作有利于市民养成良好的停车习惯,帮助他们树立绿色出行的意识,受到了广大市民的一致好评.现从某单位随机抽取80名职工,统计了他们一周内路边停车的时间t(单位:小时),整理得到数据分组及频率分布直方图如下:(1)从该单位随机选取一名职工,试估计这名职工一周内路边停车的时间少于8小时的概率;(2)求频率分布直方图中a,b的值.21.某公司为了解广告投入对销售收益的影响,在若干地区各投入4万元广告费用,并将各地的销售收益绘制成频率分布直方图(如图所示),由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从0开始计数的.(1)根据频率分布直方图计算图中各小长方形的宽度;(2)试估计该公司在若干地区各投入4万元广告费用之后,对应销售收益的平均值(以各组的区间中点值代表该组的取值);(3)该公司按照类似的研究方法,测得另外一些数据,并整理得到下表:广告投入(单位:万元)12345销售收益(单位:万元)2337由表中的数据显示,与之间存在着线性相关关系,请将(2)的结果填入空白栏,并求出关于的回归直线方程.(参考公式:)

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

利用向量可以作为基底的条件是,两个向量不共线,由此分别判定选项中的两个向量是否共线即可.【详解】由是平面内的一组基底,所以和不共线,对应选项A:,所以这2个向量共线,不能作为基底;对应选项B:,所以这2个向量共线,不能作为基底;对应选项D:,所以这2个向量共线,不能作为基底;对应选项C:与不共线,能作为基底.故选:C.【点睛】本题主要考查基底的定义,判断2个向量是否共线的方法,属于基础题.2、A【解析】

当直线与垂直时距离最大,进而可得直线的斜率,从而得到直线方程。【详解】原点坐标为,根据题意可知当直线与垂直时距离最大,由两点斜率公式可得:所以所求直线的斜率为:故所求直线的方程为:,化简可得:故答案选A【点睛】本题考查点到直线的距离公式,涉及直线的点斜式方程和一般方程,属于基础题。3、C【解析】

连接DF,因为DF与AE平行,所以∠DFD即为异面直线AE与DF所成角的平面角,设正方体的棱长为2,则FD=FD=,由余弦定理得cos∠DFD==.4、C【解析】

根据等差数列的求和与通项性质求解即可.【详解】等差数列前n项的和为,故.故.故选:C【点睛】本题主要考查了等差数列通项与求和的性质运用,属于基础题.5、B【解析】

通过得到,再利用和差公式得到答案.【详解】向量,.且故答案为B【点睛】本题考查了向量平行,正切值的计算,意在考查学生的计算能力.6、A【解析】

甲不输的概率等于甲获胜或者平局的概率相加,计算得到答案.【详解】甲不输的概率等于甲获胜或者平局的概率相加甲、乙下成平局的概率为:故答案选A【点睛】本题考查了互斥事件的概率,意在考查学生对于概率的理解.7、D【解析】

利用正弦定理化简,再利用三角形面积公式,即可得到,由,求得,最后利用余弦定理即可得到答案.【详解】由于,有正弦定理可得:,即由于在中,,,所以,联立,解得:,由于为锐角,且,所以所以在中,由余弦定理可得:,故(负数舍去)故答案选D【点睛】本题考查正弦定理,余弦定理,以及面积公式在三角形求边长中的应用,属于中档题.8、B【解析】

对导弹进行平均分组,根据系统抽样的基本原则可得结果.【详解】将50枚导弹平均分为5组,可知每组50÷5=10枚导弹即分组为:1∼10,11∼20,21∼30,31∼40,41∼50按照系统抽样原则可知每组抽取1枚,且编号成公差为10的等差数列由此可确定B正确本题正确选项:B【点睛】本题考查抽样方法中的系统抽样,属于基础题.9、C【解析】试题分析:因为,,成等比数列,所以可得,有最小值,故选C.考点:1、等比数列的性质;2、对数的运算及基本不等式求最值.10、A【解析】

由两直线垂直的条件,列出方程即可求解,得到答案.【详解】由题意,直线与直线垂直,则满足,解得,故选:A.【点睛】本题主要考查了两直线位置关系的应用,其中解答中熟记两直线垂直的条件是解答的关键,着重考查了推理与运算能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

首先根据题中求出的周期,然后利用周期性即可求出答案.【详解】由题知,有,故的周期为,故,又因为,有.故答案为:.【点睛】本题考查了三角函数的周期性,属于基础题.12、【解析】若直线与直线的交点位于第一象限,如图所示:则两直线的交点应在线段上(不包含点),当交点为时,直线的倾斜角为,当交点为时,斜率,直线的倾斜角为∴直线的倾斜角的取值范围是.故答案为13、【解析】

先利用二倍角余弦公式对函数解析式进行化简整理,进而利用三角函数最小正周期的公式求得函数的最小正周期.【详解】解:f(x)=1﹣2sin2x=cos2x∴函数最小正周期Tπ故答案为π.【点睛】本题主要考查了二倍角的化简和三角函数的周期性及其求法.考查了三角函数的基础的知识的应用.14、21.2【解析】

计算出,,可知回归方程经过样本中心点,从而求得,代入可得答案.【详解】由表中数据知,,,线性回归直线必过点,所以将,代入回归直线方程中,得,所以当时,.【点睛】本题主要考查回归方程的相关计算,难度很小.15、【解析】

在等式两边取倒数,可得出,然后利用等差数列的通项公式求出的通项公式,即可求出.【详解】,等式两边同时取倒数得,.所以,数列是以为首项,以为公差的等差数列,.因此,.故答案为:.【点睛】本题考查利用倒数法求数列通项,同时也考查了等差数列的定义,考查计算能力,属于中等题.16、1【解析】

本题主要考查了已知数列的通项式求前和,根据题目分奇数项和偶数项直接求即可。【详解】,则.故答案为:1.【点睛】本题主要考查了给出数列的通项式求前项和以及极限。求数列的前常用的方法有错位相减、分组求和、裂项相消等。本题主要利用了分组求和的方法。属于基础题。三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、【解析】

作交于,则为异面直线与所成角,在中求出各边的长度,根据余弦定理,得到的余弦值,即为答案.【详解】作交于,则为异面直线与所成角,因为为中点,所以是的一条中位线,所以,因为正三棱柱,所以面,而面,所以所以在中,,则,在中,,则,在中,由余弦定理得.故答案为【点睛】本题考查求异面直线所成的角的余弦值,余弦定理,属于简单题.18、(1)证明见解析(2)到平面的距离为【解析】

试题分析:(1)连结BD、AC相交于O,连结OE,则PB∥OE,由此能证明PB∥平面ACE.(2)以A为原点,AB为x轴,AD为y轴,AP为z轴,建立空间直角坐标系,利用向量法能求出A到平面PBD的距离试题解析:(1)设BD交AC于点O,连结EO.因为ABCD为矩形,所以O为BD的中点.又E为PD的中点,所以EO∥PB又EO平面AEC,PB平面AEC所以PB∥平面AEC.(2)由,可得.作交于.由题设易知,所以故,又所以到平面的距离为法2:等体积法由,可得.由题设易知,得BC假设到平面的距离为d,又因为PB=所以又因为(或),,所以考点:线面平行的判定及点到面的距离19、定价为每桶7元,最大利润为440元.【解析】

若设定价在进价的基础上增加元,日销售利润为元,则,其中,整理函数,可得取何值时,有最大值,即获得最大利润【详解】设定价在进价的基础上增加元,日销售利润为元,则,由于,且,所以,;即,.所以,当时,取最大值.此时售价为,此时的最大利润为440元.【点睛】本题主要考查二次函数的应用,意在考查学生对该知识的理解掌握水平,属于基础题.20、(1);(2),.【解析】

(1)由频率分布表即可得解;(2)由频率分布直方图中小矩形的高为频率与组距的比值,观察频率分布表的数据即可得解.【详解】解:(1)记“从该单位随机选取一名职工,这名职工该周路边停车的时间少于8小时”为事件A,则;(2)由频率分布表可得:区间的频数为8,则,区间的频数为12,则.【点睛】本题考查了频率分布表及频率分布直方图,属基础题.21、(1)2;(2)5;(3)空白栏中填5,【解析】

(1)根据频率等于小长方形的面积以及频率和为,得到关于的等式,求解出即可;(2)根据各组数据的组中值与频率的乘积之和得到对应的销售收益的平均值;(3)先填写空白栏数据,然后根据所给数据计算出,即可求解出回归直线方程.【详解】(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论