江苏省常州市常州高级中学2025届高一下数学期末监测试题含解析_第1页
江苏省常州市常州高级中学2025届高一下数学期末监测试题含解析_第2页
江苏省常州市常州高级中学2025届高一下数学期末监测试题含解析_第3页
江苏省常州市常州高级中学2025届高一下数学期末监测试题含解析_第4页
江苏省常州市常州高级中学2025届高一下数学期末监测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省常州市常州高级中学2025届高一下数学期末监测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.l:的斜率为A.﹣2 B.2 C. D.2.是等差数列的前n项和,如果,那么的值是()A.12 B.24 C.36 D.483.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积为()A. B.C. D.4.用斜二测画法画一个边长为2的正三角形的直观图,则直观图的面积是:A. B. C. D.5.三棱锥V-ABC中,VA=VB=AC=BC=2,AB=23,VC=1,则二面角V-AB-CA.30° B.45° C.60° D.90°6.设等差数列的前项和为,若,,则的值为()A. B. C. D.7.已知扇形的弧长是8,其所在圆的直径是4,则扇形的面积是()A.8 B.6 C.4 D.168.设等差数列的前项和为,若公差,,则的值为()A.65 B.62 C.59 D.569.已知函数(,,)的部分图象如图所示,则()A. B. C. D.10.《九章算术》中的玉石问题:“今有玉方一寸,重七两;石方一寸,重六两.今有石方三寸,中有玉,并重十一斤(即176两),问玉、石重各几何?”其意思为:“宝玉1立方寸重7两,石料1立方寸重6两,现有宝石和石料混合在一起的一个正方体,棱长是3寸,质量是11斤(即176两),问这个正方体中的宝玉和石料各多少两?”如图所示的程序框图给出了对此题的一个求解算法,运行该程序框图,则输出的分别为()A.90,86 B.98,78 C.94,82 D.102,74二、填空题:本大题共6小题,每小题5分,共30分。11.中医药是反映中华民族对生命、健康和疾病的认识,具有悠久历史传统和独特理论及技术方法的医药学体系,是中华文明的瑰宝.某科研机构研究发现,某品种中成药的药物成份的含量(单位:)与药物功效(单位:药物单位)之间具有关系:.检测这种药品一个批次的5个样本,得到成份的平均值为,标准差为,估计这批中成药的药物功效的平均值为__________药物单位.12.已知x、y满足约束条件,则的最小值为________.13.在中,角的对边分别为,若面积,则角__________.14.计算:__________.15.若函数图象各点的横坐标缩短为原来的一半,再向左平移个单位,得到的函数图象离原点最近的的对称中心是______.16.在中,角为直角,线段上的点满足,若对于给定的是唯一确定的,则_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,且为第二象限角.(Ⅰ)求的值;(Ⅱ)求的值.18.如图,在平面直角坐标系中,锐角和钝角的顶点与原点重合,始边与轴的正半轴重合,终边分别与单位圆交于,两点,且.(1)求的值;(2)若点的横坐标为,求的值.19.已知,,,均为锐角,且.(1)求的值;(2)若,求的值.20.如图,三角形中,,是边长为l的正方形,平面底面,若分别是的中点.(1)求证:底面;(2)求几何体的体积.21.已知圆关于直线对称,半径为,且圆心在第一象限.(Ⅰ)求圆的方程;(Ⅱ)若直线与圆相交于不同两点、,且,求实数的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

先化成直线的斜截式方程即得直线的斜率.【详解】由题得直线的方程为y=2x,所以直线的斜率为2.故选:B【点睛】本题主要考查直线斜率的求法,意在考查学生对该知识的理解掌握水平和分析推理能力.2、B【解析】

由等差数列的性质:若m+n=p+q,则即可得.【详解】故选B【点睛】本题考查等比数列前n项和的求解和性质的应用,是基础题型,解题中要注意认真审题,注意下标的变化规律,合理地进行等价转化.3、C【解析】

先通过三视图找到几何体原图,再求几何体的体积得解.【详解】由题得该几何体是一个边长为4的正方体挖去一个圆锥(圆锥底面在正方体上表面上,圆锥顶部朝下),所以几何体体积为.故选:C【点睛】本题主要考查三视图还原几何体原图,考查组合体体积的计算,意在考查学生对这些知识的理解掌握水平.4、C【解析】分析:先根据直观图画法得底不变,为2,再研究高,最后根据三角形面积公式求结果.详解:因为根据直观图画法得底不变,为2,高为,所以直观图的面积是选C.点睛:本题考查直观图画法,考查基本求解能力.5、C【解析】

取AB中点O,连结VO,CO,由等腰三角形的性质可得,VO⊥AB,CO⊥AB,∠VOC是二面角V-AB-C的平面角,由此利用余弦定理能求出二面角的平面角V-AB-C的度数.【详解】取AB中点O,连结VO,CO,∴三棱锥V-ABC中,VA=VB=AC=BC=2,AB=23所以VO⊥AB,CO⊥AB∴∠VOC是二面角V-AB-C的平面角,VO=VCO=B∴cos∴∠VOC=60∴二面角V-AB-C的平面角的度数为60∘【点睛】本题主要考查三棱锥的性质、二面角的求法,属于中档题.求二面角的大小既能考查线线垂直关系,又能考查线面垂直关系,同时可以考查学生的计算能力,是高考命题的热点,求二面角的方法通常有两个思路:一是利用空间向量,建立坐标系,这种方法优点是思路清晰、方法明确,但是计算量较大;二是传统方法,求出二面角平面角的大小,这种解法的关键是找到平面角.6、D【解析】

利用等差数列的前项和的性质可求的值.【详解】因为,所以,故,故选D.【点睛】一般地,如果为等差数列,为其前项和,则有性质:(1)若,则;(2)且;(3)且为等差数列;(4)为等差数列.7、A【解析】

直接利用扇形的面积公式求解.【详解】扇形的弧长l=8,半径r=2,由扇形的面积公式可知,该扇形的面积S=1故选A【点睛】本题主要考查扇形面积的计算,意在考查学生对该知识的理解掌握水平和分析推理能力.8、A【解析】

先求出,再利用等差数列的性质和求和公式可求.【详解】,所以,故选A.【点睛】一般地,如果为等差数列,为其前项和,则有性质:(1)若,则;(2)且;(3)且为等差数列;(4)为等差数列.9、D【解析】试题分析:由图可知,,∴,又,∴,∴,又.∴.考点:由图象确定函数解析式.10、B【解析】(1);(2);(3);(4),输出分别为98,78。故选B。二、填空题:本大题共6小题,每小题5分,共30分。11、92【解析】

由题可得,进而可得,再计算出,从而得出答案.【详解】5个样本成份的平均值为,标准差为,所以,,即,解得因为,所以所以这批中成药的药物功效的平均值药物单位【点睛】本题考查求几个数的平均数,解题的关键是求出,属于一般题.12、-3【解析】

作出可行域,目标函数过点时,取得最小值.【详解】作出可行域如图表示:目标函数,化为,当过点时,取得最大值,则取得最小值,由,解得,即,的最小值为.故答案为:【点睛】本题考查二元一次不等式组表示平面区域,以及线性目标函数的最值,属于基础题.13、【解析】

根据面积公式计算出的值,然后利用反三角函数求解出的值.【详解】因为,所以,则,则有:.【点睛】本题考查三角形的面积公式以及余弦定理的应用,难度较易.利用面积公式的时候要选择合适的公式进行化简,可根据所求角进行选择.14、【解析】

分子分母同除以,即可求出结果.【详解】因为.故答案为【点睛】本题主要考查“”型的极限计算,熟记常用做法即可,属于基础题型.15、【解析】

由二倍角公式化简函数式,然后由三角函数图象变换得新解析式,结合正弦函数性质得对称中心.【详解】由题意,经过图象变换后新函数解析式为,由,,,绝对值最小的是,因此所求对称中心为.故答案为:.【点睛】本题考查三角函数的图象变换,考查正弦函数的性质,考查二倍角公式,掌握正弦函数性质是解题关键.16、【解析】

设,根据已知先求出x的值,再求的值.【详解】设,则.依题意,若对于给定的是唯一的确定的,函数在(1,)是增函数,在(,+)是减函数,所以,此时,.故答案为【点睛】本题主要考查对勾函数的图像和性质,考查差角的正切的计算和同角的三角函数的关系,意在考查学生对这些知识的理解掌握水平和分析推理能力.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ).【解析】

(Ⅰ)由已知利用同角三角函数基本关系式可求,利用诱导公式,二倍角公式即可计算得解;(Ⅱ)由已知利用二倍角的余弦函数公式可求cos2α的值,根据同角三角函数基本关系式可求tan2α的值,根据两角和的正切函数公式即可计算得解.【详解】(Ⅰ)由已知,得,∴.(Ⅱ)∵,得,∴.【点睛】本题主要考查了同角三角函数基本关系式,诱导公式,二倍角公式,两角和的正切函数公式在三角函数化简求值中的综合应用,考查了计算能力和转化思想,属于基础题.18、(1)-1;(2)【解析】

(1)用表示出,然后利用诱导公式化简所求表达式,求得表达式的值.(2)根据点的横坐标即的值,求得的值,根据诱导公式求得的值,由此利用两角和与差的正弦公式,化简求得的值.【详解】解:(1)∵∴,∴(2)由已知点的横坐标为∴,,【点睛】本小题主要考查三角函数的定义,考查利用诱导公式化简求值,考查两角和与差的正弦公式以及同角三角函数的基本关系式,考查运算求解能力,属于中档题.19、(1);(2)【解析】

(1)计算表达出,再根据,两边平方求化简即可求得.(2)根据,再利用余弦的差角公式展开后分别计算求解即可.【详解】(1)由题意,得,,,,.(2),,均为锐角,仍为锐角,,,.【点睛】本题主要考查了根据向量的数量积列出关于三角函数的等式,再利用三角函数中的和差角以及凑角求解的方法.属于中档题.20、(1)证明见解析;(2).【解析】试题分析:(1)通过面面平行证明线面平行,所以取的中点,的中点,连接.只需通过证明HG//BC,HF//AB来证明面GHF//面ABC,从而证明底面.(2)原图形可以看作是以点C为顶点,ABDE为底的四棱锥,所四棱锥的体积公式可求得体积.试题解析:(1)取的中点,的中点,连接.(如图)∵分别是和的中点,∴,且,,且.又∵为正方形,∴,.∴且.∴为平行四边形.∴,又平面,∴平面.(2)因为,∴,又平面平面,平面,∴平面.∵三角形是等腰直角三角形,∴.∵是四棱锥,∴.【点睛】证明线面平行时,先直观判断平面内是否存在一条直线和已知直线平行,若找不到这样的直线,可以考虑通过面面平行来推导线面平行,应用线面平行性质的关键是如何确定交线的位置,有时需要经过已知直线作辅助平面来确定交线.在应用线面平行、面面平行的判定定理和性质定理进行平行转化时,一定要注意定理成立的条件,严格按照定理成立的条件

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论