版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
绥化市重点中学2025届高一数学第二学期期末综合测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在数列{an}中,an=31﹣3n,设bn=anan+1an+2(n∈N*).Tn是数列{bn}的前n项和,当Tn取得最大值时n的值为()A.11 B.10 C.9 D.82.如果,那么下列不等式错误的是()A. B.C. D.3.在直角梯形中,,为的中点,若,则A.1 B. C. D.4.已知,则比多了几项()A.1 B. C. D.5.已知,则使得都成立的取值范围是().A. B. C. D.6.已知点,点满足线性约束条件O为坐标原点,那么的最小值是A. B. C. D.7.的值为()A. B. C. D.8.已知角的终边过点,则()A. B. C. D.9.已知直线的倾斜角为,在轴上的截距为2,则此直线方程为()A. B. C. D.10.已知,,,,那么()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知无穷等比数列的前项和,其中为常数,则________12.在明朝程大位《算术统宗》中有这样的一首歌谣:“远看巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯”.这首古诗描述的这个宝塔古称浮屠,本题说“宝塔一共有七层,每层悬挂的红灯数是上一层的2倍,共有381盏灯,问塔顶有几盏灯?”根据上述条件,从上往下数第二层有___________盏灯.13.设满足不等式组,则的最小值为_____.14.已知正实数x,y满足2x+y=2,则xy的最大值为______.15.在中,角A,B,C所对的边分别为a,b,c,若的面积为,则的最大值为________.16.函数在内的单调递增区间为____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.近年来,我国自主研发的长征系列火箭的频频发射成功,标志着我国在该领域已逐步达到世界一流水平.火箭推进剂的质量为,去除推进剂后的火箭有效载荷质量为,火箭的飞行速度为,初始速度为,已知其关系式为齐奥尔科夫斯基公式:,其中是火箭发动机喷流相对火箭的速度,假设,,,是以为底的自然对数,,.(1)如果希望火箭飞行速度分别达到第一宇宙速度、第二宇宙速度、第三宇宙速度时,求的值(精确到小数点后面1位).(2)如果希望达到,但火箭起飞质量最大值为,请问的最小值为多少(精确到小数点后面1位)?由此指出其实际意义.18.某同学利用暑假时间到一家商场勤工俭学,该商场向他提供了三种付款方式:第一种,每天支付38圆;第二种,第一天付4元,第二天付8元,第三天付12元,以此类推:第三种,第一天付0.4元,以后每天比前一天翻一番(即增加一倍),你会选择哪种方式领取报酬呢?19.在中,角,,所对的边为,,,向量与向量共线.(1)若,求的值;(2)若为边上的一点,且,若为的角平分线,求的取值范围.20.已知f(x)=(Ⅰ)化简f(x);(Ⅱ)若x是第三象限角,且tanx=2,求f(x)21.已知是同一平面内的三个向量,其中为单位向量.(Ⅰ)若//,求的坐标;(Ⅱ)若与垂直,求与的夹角.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
由已知得到等差数列的公差,且数列的前11项大于1,自第11项起小于1,由,得出从到的值都大于零,时,时,,且,而当时,,由此可得答案.【详解】由,得,等差数列的公差,由,得,则数列的前11项大于1,自第11项起小于1.由,可得从到的值都大于零,当时,时,,且,当时,,所以取得最大值时的值为11.故选:B.【点睛】本题主要考查了数列递推式,以及数列的和的最值的判定,其中解答的关键是明确数列的项的特点,着重考查了分析问题和解答问题的能力,属于中档试题.2、A【解析】
利用不等式的性质或比较法对各选项中不等式的正误进行判断.【详解】,,,则,,可得出,因此,A选项错误,故选:A.【点睛】本题考查判断不等式的正误,常利用不等式的性质或比较法来进行判断,考查推理能力,属于基础题.3、B【解析】
连接,因为为中点,得到,可求出,从而可得出结果.【详解】连接,因为为中点,,.故选B【点睛】本题主要考查平面向量基本定理的应用,熟记平面向量基本定理即可,属于常考题型.4、D【解析】
由写出,比较两个等式得多了几项.【详解】由题意,则,那么:,又比多了项.故选:D.【点睛】本题考查对函数的理解和带值计算问题,属于基础题.5、B【解析】
先解出不等式的解集,得到当时,不等式的解集,最后求出它们的交集即可.【详解】因为,所以,因为,所以,要想使得都成立,所以取值范围是,故本题选B.【点睛】本题考查了一元二次不等式的解法,考查了不等式的性质应用,考查了数学运算能力.6、D【解析】
点满足线性约束条件∵令目标函数画出可行域如图所示,联立方程解得在点处取得最小值:故选D【点睛】此题主要考查简单的线性规划问题以及向量的内积的问题,解决此题的关键是能够找出目标函数.7、B【解析】由诱导公式可得,故选B.8、D【解析】
首先根据三角函数的定义,求得,之后应用三角函数的诱导公式,化简求得结果.【详解】由已知得,则.故选D【点睛】该题考查的是有关三角函数的化简求值问题,涉及到的知识点有三角函数的定义,诱导公式,属于简单题目.9、D【解析】
由题意可得直线的斜率和截距,由斜截式可得答案.【详解】解:∵直线的倾斜角为45°,∴直线的斜率为k=tan45°=1,由斜截式可得方程为:y=x+2,故选:D.【点睛】本题考查直线的斜截式方程,属基础题.10、C【解析】由于故,故,所以.由于,由于,所以,故.综上所述选.二、填空题:本大题共6小题,每小题5分,共30分。11、1【解析】
根据等比数列的前项和公式,求得,再结合极限的运算,即可求解.【详解】由题意,等比数列前项和公式,可得,又由,所以,所以,可得.故答案为:.【点睛】本题主要考查了等比数列的前项和公式的应用,以及熟练的极限的计算,其中解答中根据等比数列的前项和公式,求得的值,结合极限的运算是解答的关键,着重考查了推理与运算能力,属于基础题.12、6.【解析】
根据题意可将问题转化为等比数列中,已知和,求解的问题;利用等比数列前项和公式可求得,利用求得结果.【详解】由题意可知,每层悬挂的红灯数成等比数列,设为设第层悬挂红灯数为,向下依次为且即从上往下数第二层有盏灯本题正确结果;【点睛】本题考查利用等比数列前项和求解基本量的问题,属于基础题.13、-6【解析】作出可行域,如图内部(含边界),作直线,当向下平移时,减小,因此当过点时,为最小值.14、【解析】
由基本不等式可得,可求出xy的最大值.【详解】因为,所以,故,当且仅当时,取等号.故答案为.【点睛】利用基本不等式求最值必须具备三个条件:①各项都是正数;②和(或积)为定值;③等号取得的条件.15、【解析】
先求得的值,再利用两角和差的三角公式和正弦函数的最大值,求得的最大值.【详解】中,若的面积为,,.,当且仅当时,取等号,故的最大值为,故答案为:.【点睛】本题主要两角和差的三角公式的应用和正弦函数的最大值,属于基础题.16、【解析】
将函数进行化简为,求出其单调增区间再结合,可得结论.【详解】解:,递增区间为:,可得,在范围内单调递增区间为。故答案为:.【点睛】本题考查了正弦函数的单调区间,属于基础题。三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)见解析【解析】
(1)弄清题意,将相关数据代入齐奥尔科夫斯基公式:,即可得出各个等级的速度对应的的值;(2)弄清题意与相关名词,火箭起飞质量即为,将公式变形,分离出,解不等式即可得,的最小值为.【详解】(1)由题意可得,,,且,,当达到第一宇宙速度时,有,;当达到第二宇宙速度时,有,;当达到第三宇宙速度时,有,.(2)因为希望达到,但火箭起飞质量最大值为,,,即,得,的最小值为比较(1)中当达到第三宇宙速度时,;火箭起飞质量为,此时,达到,但火箭起飞质量最大值为,的最小值为.由以上说明实际意义为:不是火箭的推进剂质量越大,火箭达到的速度越大,当减少推进剂质量,增大火箭发动机喷流相对火箭的速度,同样可以达到想要的速度.【点睛】本题是一个典型的数学模型的应用问题,用数学的知识解决实际问题,这类题目关键是弄清题意;建立适当的函数模型进行解答.属于中档题.18、见解析【解析】
,,.下面考察,,的大小.可以看出时,.因此,当工作时间小于10天时,选用第一种付费方式,时,,,因此,选用第三种付费方式.19、(1)32;(2)【解析】
由两向量坐标以及向量共线,结合正弦定理,化简可得(1)由,,代入原式化简,即可得到答案;(2)在和在中,利用正弦定理,化简可得,,代入原式,化简即可得到,利用三角形的内角范围结合三角函数的值域,即可求出的取值范围.【详解】向量与向量共线所以,由正弦定理得:.即,由于在中,,则,所以,由于,则.(1),.(2)因为,为的角平分线,所以,在中,,因为,所以,所以在中,,因为,所以,所以,则,因为,所以,所以,即的取值范围为.【点睛】本题主要考查向量共线、正弦定理、二倍角公式、三角函数的值域等知识,考查学生转化与求解能力,考查学生基本的计算能力,有一定综合性.20、(Ⅰ)f(x)=cosx【解析】
(Ⅰ)利用诱导公式进行化简即可,注意符号正负;(Ⅱ)根据化简的的结果以及给出的条件,利用同角的三角函数的基本关系求解.【详解】解:(Ⅰ)f(x)=(Ⅱ)∵tanx=2,∴sinx=2cosx∵x是第三象限角,∴f(x)=【点睛】(1)诱导公式的使用方法:奇变偶不变,符号看象限,这里
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 个性化印刷与装订设备出租考核试卷
- 线缆买卖合同范本
- 美甲店转让合同
- 吉林建筑大学《新媒体广告设计》2023-2024学年第一学期期末试卷
- 吉林工业职业技术学院《日语视听说》2023-2024学年第一学期期末试卷
- 《基于直角坐标机器人的超声检测系统的研制》
- 2025年施工员实习日志汇编大全
- 市政工程施工方案与技术措施
- 医院防排烟施工方案与管理措施
- 2024六一儿童节作文大全5篇
- 2024年绩效考核与薪酬方案
- 2024低温阀门试验规范
- 湖北省石首楚源“源网荷储”一体化项目可研报告
- 家庭教育指导师练习试卷附答案
- 艺术鉴赏学习通超星期末考试答案章节答案2024年
- 广东省2024年中考数学试卷三套合卷【附答案】
- 2024-2025学年四川省成都市高新区六年级数学第一学期期末考试试题含解析
- 《管理学原理与方法》考试复习题库(含答案)
- 2024年人工智能训练师认证考试题库(浓缩600题)
- 重度哮喘诊断与处理中国专家共识(2024)解读课件
- 2024-2030年色素提取行业市场发展分析与发展趋势及投资前景预测报告
评论
0/150
提交评论