版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
濮阳市重点中学2025届高一数学第二学期期末经典试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.为了了解运动员对志愿者服务质量的意见,打算从1200名运动员中抽取一个容量为40的样本,考虑用系统抽样,则分段间隔为A.40 B.20 C.30 D.122.已知两点,,直线过点且与线段相交,则直线的斜率的取值范围是()A. B.C. D.或3.关于的不等式对一切实数都成立,则的取值范围是()A. B. C. D.4.已知△ABC的项点坐标为A(1,4),B(﹣2,0),C(3,0),则角B的内角平分线所在直线方程为()A.x﹣y+2=0 B.xy+2=0 C.xy+2=0 D.x﹣2y+2=05.在中,角,,所对的边分别为,,,,的平分线交于点,且,则的最小值为()A.8 B.9 C.10 D.76.若将一个质点随机投入如图所示的长方形ABCD中,其中AB=2,BC=1,则质点落在以AB为直径的半圆内的概率是()A. B. C. D.7.在钝角中,角的对边分别是,若,则的面积为A. B. C. D.8.如图是函数一个周期的图象,则的值等于A. B. C. D.9.在四边形中,如果,,那么四边形的形状是()A.矩形 B.正方形 C.菱形 D.直角梯形10.如图,在圆内随机撒一把豆子,统计落在其内接正方形中的豆子数目,若豆子总数为n,落在正方形内的豆子数为m,则圆周率π的估算值是()A.nmB.2nmC.3n二、填空题:本大题共6小题,每小题5分,共30分。11.若数列是正项数列,且,则_______.12.的值域是______.13.已知,若直线与直线垂直,则的最小值为_____14.已知三个事件A,B,C两两互斥且,则P(A∪B∪C)=__________.15.已知正三棱锥的底面边长为6,所在直线与底面所成角为60°,则该三棱锥的侧面积为_______.16.已知函数的最小正周期为,若将该函数的图像向左平移个单位后,所得图像关于原点对称,则的最小值为________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在中,内角、、所对的边分别为、、,且.(1)求;(2)若,,求.18.三角比内容丰富,公式很多,若仔细观察、大胆猜想、科学求证,你也能发现其中的一些奥秘.请你完成以下问题:(1)计算:,,;(2)根据(1)的计算结果,请你猜出一个一般的结论用数学式子加以表达,并证明你的结论,写出推理过程.19.某中学从高三男生中随机抽取100名学生,将他们的身高数据进行整理,得到下侧的频率分布表.组号分组频率第1组[160,165)0.05第2组0.35第3组0.3第4组0.2第5组0.1合计1.00(Ⅰ)为了能对学生的体能做进一步了解,该校决定在第3,4,5组中用分层抽样的方法抽取6名学生进行体能测试,问第3,4,5组每组各应抽取多少名学生进行测试;(Ⅱ)在(Ⅰ)的前提下,学校决定在6名学生中随机抽取2名学生进行引体向上测试,求第3组中至少有一名学生被抽中的概率;(Ⅲ)试估计该中学高三年级男生身高的中位数位于第几组中,并说明理由.20.在中,内角A、B、C所对的边分别为,,,已知.(Ⅰ)求角B的大小;(Ⅱ)设,,求.21.已知内角的对边分别是,若,,.(1)求;(2)求的面积.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
根据系统抽样的定义和方法,结合题意可分段的间隔等于个体总数除以样本容量,即可求解.【详解】根据系统抽样的定义和方法,结合题意可分段的间隔,故选C.【点睛】本题主要考查了系统抽样的定义和方法,其中解答中熟记系统抽样的定义和方法是解答的关键,着重考查了推理与运算能力,属于基础题.2、D【解析】
作出示意图,再结合两点间的斜率公式,即可求得答案.【详解】,,又直线过点且与线段相交,作图如下:则由图可知,直线的斜率的取值范围是:或.故选:D【点睛】本题借直线与线段的交点问题,考查两点间的斜率公式,考查理解辨析能力,属于中档题.3、D【解析】
特值,利用排除法求解即可.【详解】因为当时,满足题意,所以可排除选项B、C、A,故选D【点睛】不等式恒成立问题有两个思路:求最值,说明恒成立参变分离,再求最值。4、D【解析】
由已知可得|AB|=|BC|=5,所以角B的内角平分线所在直线方程为AC的垂直平分线,继而可以求得结果.【详解】由已知可得|AB|=|BC|=5,所以角B的内角平分线所在直线方程为AC的垂直平分线,又线段AC中点坐标为(2,2),则角B的内角平分线所在直线方程为y﹣2,即x﹣2y+2=1.故选:D.【点评】本题考查直线的位置关系,考查垂直的应用,由|AB|=|BC|=5转化为求直线的AC的垂直平分线是关键,属于中档题.5、B【解析】
根据三角形的面积公式,建立关于的关系式,结合基本不等式,利用1的代换,即可求解,得到答案.【详解】由题意,因为,的平分线交于点,且,所以,整理得,得,则,当且仅当,即,所以的最小值9,故选B.【点睛】本题主要考查了基本不等式的应用,其中合理利用1的代换,结合基本不等式求解是解答的关键,着重考查了推理与运算能力,属于基础题.6、B【解析】试题分析:本题是几何概型问题,矩形面积2,半圆面积,所以质点落在以AB为直径的半圆内的概率是,故选B.考点:几何概型.7、A【解析】
根据已知求出b的值,再求三角形的面积.【详解】在中,,由余弦定理得:,即,解得:或.∵是钝角三角形,∴(此时为直角三角形舍去).∴的面积为.故选A.【点睛】本题主要考查余弦定理解三角形和三角形的面积的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.8、A【解析】
利用图象得到振幅,周期,所以,再由图象关于成中心对称,把原式等价于求的值.【详解】由图象得:振幅,周期,所以,所以,因为图象关于成中心对称,所以,,所以原式,故选A.【点睛】本题考查三角函数的周期性、对称性等性质,如果算出每个值再相加,会浪费较多时间,且容易出错,采用对称性求解,能使问题的求解过程变得更简洁.9、C【解析】试题分析:因为,所以,即四边形的对角线互相垂直,排除选项AD;又因为,所以四边形对边平行且相等,即四边形为平行四边形,但不能确定邻边垂直,所以只能确定为菱形.考点:1.向量相等的定义;2.向量的垂直;10、B【解析】试题分析:设正方形的边长为2.则圆的半径为2,根据几何概型的概率公式可以得到mn=4考点:几何概型.【方法点睛】本题題主要考查“体积型”的几何概型,属于中档题.解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,求与体积有关的几何概型问题关鍵是计算问题题的总体积(总空间)以及事件的体积(事件空间);几何概型问题还有以下几点容易造成失分,在备考时要高度关注:(1)不能正确判断事件是古典概型还是几何概型导致错误;(2)基本事件对应的区域测度把握不准导致错误;(3)利用几何概型的概率公式时,忽视验证事件是否等可能性导致错误.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
有已知条件可得出,时,与题中的递推关系式相减即可得出,且当时也成立。【详解】数列是正项数列,且所以,即时两式相减得,所以()当时,适合上式,所以【点睛】本题考差有递推关系式求数列的通项公式,属于一般题。12、【解析】
对进行整理,得到正弦型函数,然后得到其值域,得到答案.【详解】,因为所以的值域为.故答案为:【点睛】本题考查辅助角公式,正弦型函数的值域,属于简单题.13、8【解析】
两直线斜率存在且互相垂直,由斜率乘积为-1求得等式,把目标式子化成,运用基本不等式求得最小值.【详解】设直线的斜率为,,直线的斜率为,,两条直线垂直,,整理得:,,等号成立当且仅当,的最小值为.【点睛】利用“1”的代换,转化成可用基本不等式求最值,考查转化与化归的思想.14、0.9【解析】
先计算,再计算【详解】故答案为0.9【点睛】本题考查了互斥事件的概率计算,属于基础题型.15、【解析】
画出图形,过P做底面的垂线,垂足O落在底面正三角形中心,即,因为,即可求出,所以.【详解】作于,因为为正三棱锥,所以,为中点,连结,则,过作⊥平面,则点为正三角形的中心,点在上,所以,,正三角形的边长为6,则,,,斜高,三棱锥的侧面积为:【点睛】此题考查正三棱锥,即底面为正三角形,侧面为等腰三角形的三棱锥,正四面体为四个面都是正三角形,画出图像,属于简单的立体几何题目.16、【解析】
先利用周期公式求出,再利用平移法则得到新的函数表达式,依据函数为奇函数,求出的表达式,即可求出的最小值.【详解】由得,所以,向左平移个单位后,得到,因为其图像关于原点对称,所以函数为奇函数,有,则,故的最小值为.【点睛】本题主要考查三角函数的性质以及图像变换,以及型的函数奇偶性判断条件.一般地为奇函数,则;为偶函数,则;为奇函数,则;为偶函数,则.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】
(1)利用正弦定理化简为,再利用余弦定理得到答案.(2)先用和差公式计算,再利用正弦定理得到.【详解】(1)由正弦定理,可化为,得,由余弦定理可得,有又由,可得.(2)由,由正弦定理有.【点睛】本题考查了正弦定理,余弦定理,和差公式,意在考查学生的计算能力.18、(1),,;(2).【解析】
(1)依据诱导公式以及两角和的正弦公式即可计算出;(2)观察(1)中角度的关系,合情推理出一般结论,然后利用两角和的正弦公式即可证明.【详解】(1)同理可得,,.(2)由(1)知,可以猜出:.证明如下:.【点睛】本题主要考查学生合情推理论证能力,以及诱导公式和两角和的正弦公式的应用,意在考查学生的数学抽象素养和逻辑推理能力.19、(1)3人,2人,1人.(2)0.8.(3)第3组【解析】分析:(Ⅰ)由分层抽样方法可得第组:=人;第组:=人;第组:=人;(Ⅱ)利用列举法可得个人抽取两人共有中不同的结果,其中第组的两位同学至少有一位同学被选中的情况有种,利用古典概型概率公式可得结果;(Ⅲ)由前两组频率和为,中位数可得在第组.详解:(Ⅰ)因为第3,4,5组共有60名学生,所以利用分层抽样在60名学生中抽取6名学生,每组学生人数分别为:第3组:=3人;第4组:=2人;第5组:=1人.所以第3,4,5组分别抽取3人,2人,1人.(Ⅱ)设第3组3位同学为A1,A2,A3,第4组2位同学为B1,B2,第5组1位同学为C1,则从6位同学中抽两位同学的情况分别为:(A1,A2),(A1,A3),(A1,B1),(A1,B2),(A1,C1),(A2,A3),(A2,B1),(A2,B2),(A2,C1),(A3,B1),(A3,B2),(A3,C1),(B1,B2),(B1,C1),(B2,C1).共有15种.其中第4组的两位同学至少有一位同学被选中的情况分别为:(A1,A2),(A1,A3),(A1,B1),(A1,B2),(A1,C1),(A2,A3),(A2,B1),(A2,B2),(A2,C1),(A3,B1),(A3,B2),(A3,C1),共有12种可能.所以,第4组中至少有一名学生被抽中的概率为0.8.答:第4组中至少有一名学生被抽中的概率为0.8.(Ⅲ)第3组点睛:本题主要考查分层抽样以及古典概型概率公式的应用,属于难题,利用古典概型概率公式求概率时,找准基本事件个数是解题的关键,基本亊件的探求方法有(1)枚举法:适合给定的基本事件个数较少且易一一列举出的;(2)树状图法:适合于较为复杂的问题中的基本亊件的探求.在找基本事件个数时,一定要按顺序逐个写出:先,….,再,…..依次….…这样才能避免多写、漏写现象的发生.20、(Ⅰ);(Ⅱ).【解析】
(Ⅰ)在△ABC中,利用正弦定理及其.可得,利用和差公式化简整理可得B.(Ⅱ)在△ABC中,利用余弦定理即可得出b.【详解】(Ⅰ)在△ABC中,由正弦定理,又.可得,∴sinBcosBsinB,则.又∵B∈(0,π),可得.(Ⅱ)在△ABC中,由余弦定理及a=2,c=3,,∴b2=a2+c2﹣2accosB=4+9﹣2×2×3×cos7,解得.【点睛】本题考查了正弦定理、余弦定理、和差公式,考查了推理能力与计算能力,属于中档题.21、(1);(2).【解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度新能源车辆租赁与运营合同
- 2024幼儿园保育员岗位聘用与薪酬待遇合同范本3篇
- 2024年版国际物流运输合同(含多式联运)
- 2024年购物中心导视系统设计合同3篇
- 「2024年度」智能穿戴设备研发合同
- 上海摩托车租赁协议(2024年新版)3篇
- 2024年职场劳动协议标准格式版B版
- 2024版苗圃采购合同
- 矫形鞋垫知识培训课件
- 2024整合劳务承包工程合同范本3篇
- 个人现实表现材料1500字德能勤绩廉(通用6篇)
- 六年级上册数学单元测试-5.圆 青岛版 (含答案)
- 日本疾病诊断分组(DPC)定额支付方式课件
- 复旦大学用经济学智慧解读中国课件03用大历史观看中国社会转型
- (精心整理)高一语文期末模拟试题
- QC成果解决铝合金模板混凝土气泡、烂根难题
- 管线管廊布置设计规范
- 提升教练技术--回应ppt课件
- 最新焊接工艺评定表格
- 精品洲际酒店集团皇冠酒店设计标准手册
- 农副产品交易中心运营方案
评论
0/150
提交评论