2025届河北省邢台一中、邢台二中高一下数学期末复习检测模拟试题含解析_第1页
2025届河北省邢台一中、邢台二中高一下数学期末复习检测模拟试题含解析_第2页
2025届河北省邢台一中、邢台二中高一下数学期末复习检测模拟试题含解析_第3页
2025届河北省邢台一中、邢台二中高一下数学期末复习检测模拟试题含解析_第4页
2025届河北省邢台一中、邢台二中高一下数学期末复习检测模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届河北省邢台一中、邢台二中高一下数学期末复习检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如右图所示的直观图,其表示的平面图形是(A)正三角形(B)锐角三角形(C)钝角三角形(D)直角三角形2.已知l,m是两条不同的直线,m⊥平面α,则“”是“l⊥m”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件3.下列函数中,既是偶函数又在区间上单调递减的函数是()A. B. C. D.4.设公差不为零的等差数列an的前n项和为Sn.若a2+A.10 B.11 C.12 D.135.已知为锐角,且满足,则()A. B. C. D.6.设是数列的前项和,时点在抛物线上,且的首项是二次函数的最小值,则的值为()A.45 B.54 C.36 D.-187.如果连续抛掷一枚质地均匀的骰子100次,那么第95次出现正面朝上的点数为4的概率为()A. B. C. D.8.如果点位于第四象限,则角是()A.第一象限角 B.第二象限角 C.第三象限角 D.第四象限角9.已知网格纸的各个小格均是边长为一个单位的正方形,一个几何体的三视图如图中粗线所示,则该几何体的表面积为()A. B. C. D.10.经过点,和直线相切,且圆心在直线上的圆方程为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知数列的通项公式为,的前项和为,则___________.12.已知直线y=b(0<b<1)与函数f(x)=sinωx(ω>0)在y轴右侧依次的三个交点的横坐标为x1=,x2=,x3=,则ω的值为______13.函数的值域是______.14.设向量是两个不共线的向量,若与共线,则_______.15.已知变量之间满足线性相关关系,且之间的相关数据如下表所示:_____.12340.13.1416.已知均为正数,则的最大值为______________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,与的夹角为.(1)若,求;(2)若与垂直,求.18.已知函数(1)解关于的不等式;(2)若,令,求函数的最小值.19.已知数列的前n项和为,,.(1)证明:数列为等比数列;(2)证明:.20.已知两个定点,动点满足.设动点的轨迹为曲线,直线.(1)求曲线的轨迹方程;(2)若与曲线交于不同的两点,且(为坐标原点),求直线的斜率;(3)若,是直线上的动点,过作曲线的两条切线,切点为,探究:直线是否过定点.21.已知公差不为零的等差数列的前项和为,,且成等比数列.(1)求数列的通项公式;(2)若,数列的前项和为,求.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】略2、A【解析】

根据充分条件和必要条件的定义,结合线面垂直的性质进行判断即可.【详解】当m⊥平面α时,若l∥α”则“l⊥m”成立,即充分性成立,若l⊥m,则l∥α或l⊂α,即必要性不成立,则“l∥α”是“l⊥m”充分不必要条件,故选:A.【点睛】本题主要考查充分条件和必要条件的判断,结合线面垂直的性质和定义是解决本题的关键.难度不大,属于基础题3、C【解析】

依次分析选项的奇偶性和在区间上的单调性即可得到答案.【详解】因为是奇函数,故A选项错误,因为是非奇非偶函数,故D选项错误,因为是偶函数,由函数图像知,在区间上单调递增,故B选项错误,因为是偶函数,由函数图像知,在区间上单调递减,故C选项正确.故选:C.【点睛】本题主要考查了函数的奇偶性的判断,二次函数单调性的判断,属于基础题.4、C【解析】

由等差数列的前n项和公式Sn=n(a1+an)【详解】∵S13=117,∴13a1+a132=117,∴a1【点睛】本题考查等差数列的性质求和前n项和公式及等差数列下标和的性质,属于基础题。5、D【解析】

由,得,,即可得到本题答案.【详解】由,得,所以,,所以.故选:D【点睛】本题主要考查两角和的正切公式的应用以及特殊角的三角函数值.6、B【解析】

根据点在抛物线上证得数列是等差数列,由二次函数的最小值求得首项,进而求得的值.【详解】由于时点在抛物线上,所以,所以数列是公差为的等差数列.二次函数,所以.所以.故选:B【点睛】本小题主要考查等差数列的证明,考查二次函数的最值的求法,考查等差数列前项和公式,属于基础题.7、B【解析】

由随机事件的概念作答.【详解】抛掷一枚质地均匀的骰子,出现正面朝上的点数为4,这个事件是随机事件,每次抛掷出现的概率是相等的,都是,不会随机抛掷次数的变化而变化.故选:B.【点睛】本题考查随机事件的概率,属于基础题.8、C【解析】

由点位于第四象限列不等式,即可判断的正负,问题得解.【详解】因为点位于第四象限所以,所以所以角是第三象限角故选C【点睛】本题主要考查了点的坐标与点的位置的关系,还考查了等价转化思想及三角函数值的正负与角的终边的关系,属于基础题.9、B【解析】

根据三视图还原几何体即可.【详解】由三视图可知,该几何体为一个圆柱内切了一个圆锥,圆锥侧面积为,圆柱上底面积为,圆柱侧面积为,.所以选择B【点睛】本题主要考查了三视图,根据三视图还原几何体常用的方法有:在正方体或者长方体中切割.属于中等题.10、B【解析】

设出圆心坐标,由圆心到切线的距离和它到点的距离都是半径可求解.【详解】由题意设圆心为,则,解得,即圆心为,半径为.圆方程为.故选:B.【点睛】本题考查求圆的标准方程,考查直线与圆的位置关系.求出圆心坐标与半径是求圆标准方程的基本方法.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

计算出,再由可得出的值.【详解】当时,则,当时,则,当时,.,,因此,.故答案为:.【点睛】本题考查数列求和,解题的关键就是找出数列的规律,考查分析问题和解决问题的能力,属于中等题.12、1【解析】

由题得函数的周期为解之即得解.【详解】由题得函数的周期为.故答案为1【点睛】本题主要考查三角函数的图像和性质,考查三角函数的周期,意在考查学生对这些知识的理解掌握水平和分析推理能力.13、【解析】

将函数化为的形式,再计算值域。【详解】因为所以【点睛】本题考查三角函数的值域,属于基础题。14、【解析】试题分析:∵向量,是两个不共线的向量,不妨以,为基底,则,又∵共线,.考点:平面向量与关系向量15、【解析】

根据回归直线方程过样本点的中心,代入数据即可计算出的值.【详解】因为,,所以,解得.故答案为:.【点睛】本题考查根据回归直线方程过样本点的中心求参数,难度较易.16、【解析】

根据分子和分母的特点把变形为,运用重要不等式,可以求出的最大值.【详解】(当且仅当且时取等号),(当且仅当且时取等号),因此的最大值为.【点睛】本题考查了重要不等式,把变形为是解题的关键.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】

(1)根据向量共线,对向量的夹角分类讨论,利用数量积公式即可完成求解;(2)根据向量垂直得到数量积为,再根据已知条件并借助数量积公式即可计算出的值.【详解】(1)∵,∴与的夹角为或,当时,,当时,,综上所述,;(2)∵,∴,即,∵,∴,∴∵向量的夹角的范围是,∴【点睛】本题考查根据向量的平行、垂直求解向量的夹角以及向量数量积公式的运用,难度较易.注意共线向量的夹角为或.18、(1)答案不唯一,具体见解析(2)【解析】

(1)讨论的范围,分情况得的三个答案.(2)时,写出表达式,利用均值不等式得到最小值.【详解】(1)①当时,不等式的解集为,②当时,不等式的解集为,③当时,不等式的解集为(2)若时,令(当且仅当,即时取等号).故函数的最小值为.【点睛】本题考查了解不等式,均值不等式,函数的最小值,意在考查学生的综合应用能力.19、(1)证明见解析(2)证明见解析【解析】

(1)将已知递推式取倒数得,,再结合等比数列的定义,即可得证;(2)由(1)得,再利用基本不等式以及放缩法和等比数列的求和公式,结合不等式的性质,即可得证.【详解】(1),,可得,即有,可得数列为公比为2,首项为2的等比数列;(2)由(1)可得,即,由基本不等式可得,,即有.【点睛】本题考查等比数列的定义和通项公式、求和公式、考查构造数列法以及放缩法的运用,考查化简运算能力和推理能力,属于中档题.20、(1);(2);(3).【解析】

(1)设点P坐标为(x,y),运用两点的距离公式,化简整理,即可得到所求轨迹的方程;(2)由,则点到边的距离为,由点到线的距离公式得直线的斜率;(3)由题意可知:O,Q,M,N四点共圆且在以OQ为直径的圆上,设,则圆的圆心为运用直径式圆的方程,得直线的方程为,结合直线系方程,即可得到所求定点.【详解】(1)设点的坐标为由可得,,整理可得所以曲线的轨迹方程为.(2)依题意,,且,则点到边的距离为即点到直线的距离,解得所以直线的斜率为.(3)依题意,,则都在以为直径的圆上是直线上的动点,设则圆的圆心为,且经过坐标原点即圆的方程为,又因为在曲线上由

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论