版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
济南市重点中学2025届高一下数学期末复习检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知点P(,)为角的终边上一点,则()A. B.- C. D.02.设等比数列的前项和为,若,则()A. B. C. D.3.已知等比数列的前项和为,若,,则数列的公比()A. B. C.或 D.以上都不对4.已知偶函数在区间上单调递增,则满足的的取值范围是()A. B.C. D.5.已知x,y∈R,且x>y>0,则()A. B.C. D.lnx+lny>06.已知公式为正数的等比数列满足:,,则前5项和()A.31 B.21 C.15 D.117.已知=4,=3,,则与的夹角为()A. B. C. D.8.在中,,,,则()A. B.或 C.或 D.9.某中学举行高一广播体操比赛,共10个队参赛,为了确定出场顺序,学校制作了10个出场序号签供大家抽签,高一(l)班先抽,则他们抽到的出场序号小于4的概率为()A. B. C. D.10.《九章算术》是中国古代第一部数学专著,成于公元一世纪左右,系统总结了战国、秦、汉时期的数学成就,其中《方田》一章中记载了计算弧田(弧田就是由圆弧和其所对弦所围成弓形)的面积所用的经验公式:弧田面积=(弦矢+矢矢),公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,按照上述经验公式计算所得弧田面积与其实际面积之间存在误差,现有圆心角为,弦长为米的弧田,其实际面积与按照上述经验公式计算出弧田的面积之间的误差为()平方米(其中,)A.14 B.16 C.18 D.20二、填空题:本大题共6小题,每小题5分,共30分。11.某校选修“营养与卫生”课程的学生中,高一年级有30名,高二年级有40名.现用分层抽样的方法从这70名学生中抽取一个样本,已知在高二年级的学生中抽取了8名,则在该校高一年级的学生中应抽取的人数为________.12.数列中,,以后各项由公式给出,则等于_____.13.已知数列中,且当时,则数列的前项和=__________.14.已知常数θ∈(0,π2),若函数f(x)在Rf(x)=2sinπx-1≤x≤1log是________.15.函数的递增区间是__________.16.等差数列中,,则其前12项之和的值为______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.为了了解高一学生的体能状况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图),图中从左到右各小长方形的面积之比为2:4:17:15:9:3,第二小组频数为12.(1)求第二小组的频率;(2)求样本容量;(3)若次数在110以上为达标,试估计全体高一学生的达标率为多少?18.已知函数.(1)当,时,求不等式的解集;(2)若,,的最小值为2,求的最小值.19.已知某几何体的俯视图是如图所示的矩形,正视图是一个底边长为、高为的等腰三角形,侧视图是一个底边长为、高为的等腰三角形.(1)求该几何体的体积V;(2)求该几何体的侧面积S.20.在中,角,,所对的边为,,,向量与向量共线.(1)若,求的值;(2)若为边上的一点,且,若为的角平分线,求的取值范围.21.已知两个定点,动点满足.设动点的轨迹为曲线,直线.(1)求曲线的轨迹方程;(2)若与曲线交于不同的两点,且(为坐标原点),求直线的斜率;(3)若,是直线上的动点,过作曲线的两条切线,切点为,探究:直线是否过定点.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
根据余弦函数的定义,可直接得出结果.【详解】因为点P(,)为角的终边上一点,则.故选A【点睛】本题主要考查三角函数的定义,熟记概念即可,属于基础题型.2、C【解析】
根据等比数列性质:成等比数列,计算得到,,,计算得到答案.【详解】根据等比数列性质:成等比数列,设则,;故选:C【点睛】本题考查了数列的前N项和,利用性质成等比数列可以简化运算,是解题的关键.3、C【解析】
根据和可得,解得结果即可.【详解】由得,所以,所以,所以,解得或故选:C.【点睛】本题考查了等比数列的通项公式的基本量的运算,属于基础题.4、A【解析】
根据题意,由函数的奇偶性分析可得,进而结合单调性分析可得,解可得的取值范围,即可得答案.【详解】解:根据题意,为偶函数,则,
又由函数在区间上单调递增,
则,
解得:,
故选:A.【点睛】本题考查函数的奇偶性与单调性的综合应用,关键是得到关于的不等式.5、A【解析】
结合选项逐个分析,可选出答案.【详解】结合x,y∈R,且x>y>0,对选项逐个分析:对于选项A,,,故A正确;对于选项B,取,,则,故B不正确;对于选项C,,故C错误;对于选项D,,当时,,故D不正确.故选A.【点睛】本题考查了不等式的性质,属于基础题.6、A【解析】
由条件求出数列的公比.再利用等比数列的前项求和公式即可得出.【详解】公比为正数的等比数列满足:,则,即.所以,所以.故选:A【点睛】本题考查了等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.7、C【解析】
由已知中,,,我们可以求出的值,进而根据数量积的夹角公式,求出,,进而得到向量与的夹角;【详解】,,,,,所以向量与的夹角为.故选C【点睛】本题主要考查平面向量的数量积运算和向量的夹角的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.8、B【解析】
利用正弦定理求出,然后利用三角形的内角和定理可求出.【详解】由正弦定理得,得,,,则或.当时,由三角形的内角和定理得;当时,由三角形的内角和定理得.因此,或.故选B.【点睛】本题考查利用正弦定理和三角形的内角和定理求角,解题时要注意大边对大角定理来判断出角的大小关系,考查计算能力,属于基础题.9、D【解析】
古典概率公式得到答案.【详解】抽到的出场序号小于4的概率:故答案选D【点睛】本题考查了概率的计算,属于简单题.10、B【解析】
根据题意画出图形,结合图形求出扇形的面积与三角形的面积,计算弓形的面积,再利用弧长公式计算弧田的面积,求两者的差即可.【详解】如图所示,扇形的半径为,所以扇形的面积为,又三角形的面积为,所以弧田的面积为,又圆心到弦的距离等于,所示矢长为,按照上述弧田的面积经验计算可得弦矢矢,所以两者的差为.故选:B.【点睛】本题主要考查了扇形的弧长公式和面积公式的应用,以及我国古典数学的应用问题,其中解答中认真审题,合理利用扇形弧长和面积公式求解是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.二、填空题:本大题共6小题,每小题5分,共30分。11、6【解析】
利用分层抽样的定义求解.【详解】设从高一年级的学生中抽取x名,由分层抽样的知识可知,解得x=6.故答案为6.【点睛】本题主要考查分层抽样,意在考查学生对该知识的掌握水平和分析推理能力.12、【解析】
可以利用前项的积与前项的积的关系,分别求得第三项和第五项,即可求解,得到答案.【详解】由题意知,数列中,,且,则当时,;当时,,则,当时,;当时,,则,所以.【点睛】本题主要考查了数列的递推关系式的应用,其中解答中熟练的应用递推关系式是解答的关键,着重考查了推理与运算能力,属于基础题.13、【解析】
先利用累乘法计算,再通过裂项求和计算.【详解】,数列的前项和故答案为:【点睛】本题考查了累乘法,裂项求和,属于数列的常考题型.14、15【解析】
根据f(-1【详解】∵函数f(x)在R上恒有f(-1∴f-∴函数周期为4.∵常数θ∈(0,π∴cos∴函数y=f(x)-cosθ-1在区间[-5,14]上零点,即函数y=f(x) (x∈[-5,14])与直线由f(x)=2sinπx由图可知,在一个周期内,函数y=f(x)-cos故函数y=f(x)-cosθ-1在区间故填15.【点睛】本题主要考查了函数零点的个数判断,涉及数形结合思想在解题中的运用,属于难题.15、;【解析】
先利用辅助角公式对函数化简,由可求解.【详解】函数,由,可得,所以函数的单调增区间为.故答案为:【点睛】本题考查了辅助角公式、正弦函数的图像与性质,需熟记公式与性质,属于基础题.16、【解析】
利用等差数列的通项公式、前n项和公式直接求解.【详解】∵等差数列{an}中,a3+a10=25,∴其前12项之和S126(a3+a10)=6×25=1.故答案为:1.【点睛】本题考查等差数列的前n项和的公式,考查等差数列的性质的应用,考查运算求解能力,是基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2);(3)%【解析】
(1)由于每个长方形的面积即为本组的频率,设第二小组的频率为4,则解得第二小组的频率为(2)设样本容量为,则(3)由(1)和直方图可知,次数在110以上的频率为由此估计全体高一学生的达标率为%18、(1);(2)【解析】
(1)利用零点讨论法解绝对值不等式;(2)利用绝对值三角不等式得到a+b=2,再利用基本不等式求的最小值.【详解】(1)当,时,,得或或,解得:,∴不等式的解集为.(2),∴,∴,当且仅当,时取等号.∴的最小值为.【点睛】本题主要考查零点讨论法解绝对值不等式,考查绝对值三角不等式和基本不等式求最值,意在考查学生对这些知识的理解掌握水平和分析推理能力.19、(1)1;(2)40+24【解析】
由题设可知,几何体是一个高为4的四棱锥,其底面是长、宽分别为8和6的矩形,正侧面及其相对侧面均为底边长为8,高为h1的等腰三角形,左、右侧面均为底边长为6、高为h2的等腰三角形,分析出图形之后,再利用公式求解即可.【详解】解:由题设可知,几何体是一个高为4的四棱锥,其底面是长、宽分别为8和6的矩形,正侧面及其相对侧面均为底边长为8,高为h1的等腰三角形,左、右侧面均为底边长为6、高为h2的等腰三角形,如图所示.(1)几何体的体积为V•S矩形•h6×8×4=1.(2)正侧面及相对侧面底边上的高为:h12.左、右侧面的底边上的高为:h24.故几何体的侧面面积为:S=2×(8×26×4)=40+24.20、(1)32;(2)【解析】
由两向量坐标以及向量共线,结合正弦定理,化简可得(1)由,,代入原式化简,即可得到答案;(2)在和在中,利用正弦定理,化简可得,,代入原式,化简即可得到,利用三角形的内角范围结合三角函数的值域,即可求出的取值范围.【详解】向量与向量共线所以,由正弦定理得:.即,由于在中,,则,所以,由于,则.(1),.(2)因为,为的角平分线,所以,在中,,因为,所以,所以在中,,因为,所以,所以,则,因为,所以,所以,即的取值范围为.【点睛】本题主要考查向量共线、正弦定理、二倍角公式、三角函数的值域等知识,考查学生转化与求解能力,考查学生基本的计算能力,有一定综合性.21、(1);(2);(3).【解析】
(1)设点P坐标为(x,y),运用两点的距离公式,化简整理,即可得到所求轨迹的方程;(2)由,则点到边的距离为,由点到线的距离公式得直线的斜率;(3)由题意可知:O,Q,M,N四点共圆且在以OQ为直径的圆上,设,则圆的圆心为运用直径式圆的方
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 技术合同 技术秘密成果转让协议
- 股权回购契约为基础的合同样本
- 房产转让协议
- 股东权益出资合同范本
- 建筑安装工程设计合同详解
- 两份工业品交易合同范本
- 专业技能提升协议书
- 保险合作协议书范例
- 涉外财产保险合同案例
- 房屋买卖合同范本简单版样本
- 高效沟通与管理技能提升课件
- 消防维保方案 (详细完整版)
- 四年级上册英语课件- M3U1 In the school (Period 3 ) 上海牛津版试用版(共15张PPT)
- 档案馆建设标准
- 高边坡支护专家论证方案(附有大量的图件)
- 苏教版五年级上册数学试题-第一、二单元 测试卷【含答案】
- 人员定位矿用井口唯一性检测系统
- 电力系统数据标记语言E语言格式规范CIME
- 历史纪年与历史年代的计算方法
- 快递物流运输公司 国际文件样本 形式发票样本
- 管理信息系统题目带答案
评论
0/150
提交评论