2025届山东省济南市市中区实验中学高一下数学期末综合测试模拟试题含解析_第1页
2025届山东省济南市市中区实验中学高一下数学期末综合测试模拟试题含解析_第2页
2025届山东省济南市市中区实验中学高一下数学期末综合测试模拟试题含解析_第3页
2025届山东省济南市市中区实验中学高一下数学期末综合测试模拟试题含解析_第4页
2025届山东省济南市市中区实验中学高一下数学期末综合测试模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届山东省济南市市中区实验中学高一下数学期末综合测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数的图象过点,且在上单调,同时的图象向左平移个单位之后与原来的图象重合,当,且时,,则A. B. C. D.2.函数的最大值为()A. B. C. D.3.下图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件)若这两组数据的中位数相等,且平均值也相等,则和的值分别为A.5,5 B.3,5 C.3,7 D.5,74.是()A.第一象限角 B.第二象限角 C.第三象限角 D.第四象限角5.等比数列的前n项和为,且,,成等差数列.若,则()A.15 B.7 C.8 D.166.已知a,,且,若对,不等式恒成立,则的最大值为()A. B. C.1 D.7.式子的值为()A. B.0 C.1 D.8.方程的解所在区间是()A. B.C. D.9.已知函数,若,,则()A. B.2 C. D.10.样本中共有个个体,其值分别为、、、、.若该样本的平均值为,则样本的方差为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.方程在区间内解的个数是________12.如图所示为函数的部分图像,其中、分别是函数图像的最高点和最低点,且,那么________.13.对于正项数列,定义为的“光阴”值,现知某数列的“光阴”值为,则数列的通项公式为_____.14._______________.15.函数的反函数为____________.16.棱长为,各面都为等边三角形的四面体内有一点,由点向各面作垂线,垂线段的长度分别为,则=______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.2021年广东新高考将实行“”模式,即语文、数学、英语必选,物理、历史二选一,政治、地理、化学、生物四选二,共选六科参加高考.其中偏理方向是二选一时选物理,偏文方向是二选一时选历史,对后四科选择没有限定.(1)小明随机选课,求他选择偏理方向及生物学科的概率;(2)小明、小吴同时随机选课,约定选择偏理方向及生物学科,求他们选课相同的概率.18.如右图,某货轮在A处看灯塔B在货轮的北偏东75°,距离为nmile,在A处看灯塔C在货轮的北偏西30°,距离为nmile,货轮由A处向正北航行到D处时,再看灯塔B在北偏东120°,求:(1)A处与D处的距离;(2)灯塔C与D处的距离.19.已知向量满足,且向量与的夹角为.(1)求的值;(2)求.20.已知数列满足,且(,且).(1)求证:数列是等差数列;(2)求数列的通项公式(3)设数列的前项和,求证:.21.设等差数列中,.(1)求数列的通项公式;(2)若等比数列满足,求数列的前项和.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】由题设可知该函数的周期是,则过点且可得,故,由可得,所以由可得,注意到,故,所以,应选答案A点睛:已知函数的图象求解析式(1).(2)由函数的周期求(3)利用“五点法”中相对应的特殊点求.2、D【解析】

令,根据正弦型函数的性质可得,那么,可将问题转化为二次函数在定区间上的最值问题.【详解】由题意,令,可得,,∴,∴原函数的值域与函数的值域相同.∵函数图象的对称轴为,,取得最大值为.故选:D.【点睛】本题考查三角函数中的恒等变换、函数的值域,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意换元法的使用,将问题转化为二次函数的值域问题.3、B【解析】

利用茎叶图、中位数、平均数的性质直接求解.【详解】由茎叶图得:∵甲、乙两组各5名工人某日的产量数据(单位:件)若这两组数据的中位数相等,∴65=60+y,解得y=5,∵平均值也相等,∴,解得x=1.故选B.【点睛】本题考查实数值的求法,考查茎叶图、中位数、平均数的性质等基础知识,考查运算求解能力,是基础题.4、C【解析】

本题首先要明确平面直角坐标系中每一象限所对应的角的范围,然后即可判断出在哪一象限中.【详解】第一象限所对应的角为;第二象限所对应的角为;第三象限所对应的角为;第四象限所对应的角为;因为,所以位于第三象限,故选C.【点睛】本题考查如何判断角所在象限,能否明确每一象限所对应的角的范围是解决本题的关键,考查推理能力,是简单题.5、B【解析】

通过,,成等差数列,计算出,再计算【详解】等比数列的前n项和为,且,,成等差数列即故答案选B【点睛】本题考查了等比数列通项公式,等差中项,前N项和,属于常考题型.6、C【解析】

由,不等式恒成立,得,利用绝对值不等式的定理,逐步转化,即可得到本题答案.【详解】设,对,不等式恒成立的等价条件为,又表示数轴上一点到两点的距离之和的倍,显然当时,,则有,所以,得,从而,所以的最大值为1.故选:C.【点睛】本题主要考查绝对值不等式与恒成立问题的综合应用,较难.7、D【解析】

利用两角和的正弦公式可得原式为cos(),再由特殊角的三角函数值可得结果.【详解】cos()=coscos,故选D.【点睛】本题考查两角和的余弦公式,熟练掌握两角和与差的余弦公式以及特殊角的三角函数值是解题的关键,属于基础题.8、D【解析】

令,则,所以零点在区间.方程的解所在区间是,故选D.9、C【解析】

由函数的解析式,求得,,进而得到,,结合两角差的余弦公式和三角函数的基本关系式,即可求解.【详解】由题意,函数,令,即,即,所以,令,即,即,所以,又因为,,即,,所以,,即,,平方可得,,两式相加可得,所以.故选:C.【点睛】本题主要考查了两角和与差的余弦公式,三角函数的基本关系式的应用,以及函数的解析式的应用,其中解答中合理应用三角函数的恒等变换的公式进行运算是解答的关键,着重考查了推理与运算能力,属于中档试题.10、D【解析】

根据样本的平均数计算出的值,再利用方差公式计算出样本的方差.【详解】由题意可知,,解得,因此,该样本的方差为,故选:D.【点睛】本题考查方差与平均数的计算,灵活利用平均数与方差公式进行求解是解本题的关键,考查运算求解能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、4.【解析】分析:通过二倍角公式化简得到,进而推断或,进而求得结果.详解:,所以或,因为,所以或或或,故解的个数是4.点睛:该题考查的是有关方程解的个数问题,在解题的过程中,涉及到的知识点有正弦的倍角公式,方程的求解问题,注意一定不要两边除以,最后求得结果.12、【解析】

由图可知:,因为,由周期公式得到,结合以及诱导公式即可求解.【详解】由图可知:,因为所以,即由题意可知:,即故答案为:【点睛】本题主要考查了正弦型函数的图像的性质以及求值,关键是从图像得出周期,最值等,属于基础题.13、【解析】

根据的定义把带入即可。【详解】∵∴∵∴①∴②①-②得∴故答案为:【点睛】本题主要考查了新定义题,解新定义题首先需要读懂新定义,其次再根据题目的条件带入新定义即可,属于中等题。14、2【解析】

利用裂项求和法将化简为,再求极限即可.【详解】令...故答案为:【点睛】本题主要考查数列求和中的列项求和,同时考查了极限的求法,属于中档题.15、【解析】

首先求出在区间的值域,再由表示的含义,得到所求函数的反函数.【详解】因为,所以,.所以的反函数是.故答案为:【点睛】本题主要考查反函数定义,同时考查了三角函数的值域问题,属于简单题.16、.【解析】

根据等积法可得∴三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】

(1)利用列举法,列举出偏理方向和偏文方向的所有情况,即可求得小明选择偏理方向且选择了生物学科的概率.(2)利用列举法,列举出两个人选择偏理方向且带有生物学科的所有可能,即可求得两人选课相同的概率.【详解】(1)由题意知,选六科参加高考有偏理方向:(物,政,地)、(物,政,化)、(物,政,生)、(物,地,化)、(物,地,生)、(物,化,生)六种选择;偏文方向有:(史,政,地)、(史,政,化)、(史,政,生)、(史,地,化)、(史,地,生)、(史,化,生)六种选择.由以上可知共有12种选课模式.小明选择偏理方向又选择生物的概率为.(2)小明选择偏理且有生物学科的可能有:(物,政,生)、(物,地,生)、(物,化,生)三种选择,同样小吴也是三种选择;两人选课模式有:[(物,政,生),(物,政,生)]、[(物,政,生),(物,地,生]、[(物,政,生),(物,化,生)]、[(物,地,生),(物,政,生)]、[(物,地,生),(物,地,生)[(物,地,生),(物,化,生)]、[(物,化,生),(物,政,生)]、[(物,化,生),(物,地,生)[(物,化,生),(物,化,生)]由以上可知共有9种选课法,两人选课相同有三种,所以两人选课相同的概率.【点睛】本题考查了古典概型概率的求法,利用列举法写出所有可能即可求解,属于基础题.18、(1)24;(2)8【解析】

(1)利用已知条件,利用正弦定理求得AD的长.(2)在△ADC中由余弦定理可求得CD,答案可得.【详解】(1)在△ABD中,由已知得∠ADB=60°,B=45°由正弦定理得(2)在△ADC中,由余弦定理得CD2=AD2+AC2﹣2AD•ACcos30°,解得CD=.所以A处与D处之间的距离为24nmile,灯塔C与D处之间的距离为nmile.【点睛】点睛:解三角形应用题的一般步骤(1)阅读理解题意,弄清问题的实际背景,明确已知与未知,理清量与量之间的关系.(2)根据题意画出示意图,将实际问题抽象成解三角形问题的模型.(3)根据题意选择正弦定理或余弦定理求解.(4)将三角形问题还原为实际问题,注意实际问题中的有关单位问题、近似计算的要求等.19、(1)(2)【解析】

(1)根据,得到,再由题中数据,即可求出结果;(2)根据向量数量积的运算法则,以及(1)的结果,即可得出结果.【详解】解:(1)因为,所以,即.因为,且向量与的夹角为,所以,即.(2)由(1)可得.【点睛】本题主要考查平面向量的数量积,熟记模的计算公式,以及向量数量积的运算法则即可,属于常考题型.20、(1)详见解析;(2);(3)详见解析.【解析】

(1)用定义证明得到答案.(2)推出(3)利用错位相减法和分组求和法得到,再证明不等式.【详解】解:(1)由,得,即.∴数列是以为首项,1为公差的等差数列.(2)∵

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论