北京师大附属实验中学2025届数学高一下期末综合测试试题含解析_第1页
北京师大附属实验中学2025届数学高一下期末综合测试试题含解析_第2页
北京师大附属实验中学2025届数学高一下期末综合测试试题含解析_第3页
北京师大附属实验中学2025届数学高一下期末综合测试试题含解析_第4页
北京师大附属实验中学2025届数学高一下期末综合测试试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北京师大附属实验中学2025届数学高一下期末综合测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知集合,,,则()A. B. C. D.2.下列各角中,与角终边相同的角是()A. B. C. D.3.在边长为1的正方体中,,,分别是棱,,的中点,是底面内一动点,若直线与平面没有公共点,则三角形面积的最小值为()A.1 B. C. D.4.两条直线和,,在同一直角坐标系中的图象可能是()A. B.C. D.5.已知数列1,,,9是等差数列,数列1,,,,9是等比数列,则()A. B. C. D.6.已知直线经过点,且与直线垂直,则的方程为()A. B.C. D.7.圆心在(-1,0),半径为的圆的方程为()A. B.C. D.8.已知是两条不同直线,是三个不同平面,下列命题中正确的是()A.若则 B.若则C.若则 D.若则9.化简的结果是()A. B. C. D.10.已知向量,,,的夹角为45°,若,则()A. B. C.2 D.3二、填空题:本大题共6小题,每小题5分,共30分。11.在封闭的直三棱柱内有一个表面积为的球,若,则的最大值是_______.12.已知函数,的最大值为_____.13.已知是边长为的等边三角形,为边上(含端点)的动点,则的取值范围是_______.14.在中,角所对的边分别为,若,则=______.15.已知为等差数列,,前n项和取得最大值时n的值为___________.16.已知函数的图象如下,则的值为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知二次函数满足以下要求:①函数的值域为;②对恒成立。求:(1)求函数的解析式;(2)设,求时的值域。18.如图所示,在中,点在边上,,,,.(1)求的值;(2)求的面积.19.近期,某公交公司分别推出支付宝和徽信扫码支付乘车活动,活动设置了一段时间的推广期,由于推广期内优惠力度较大,吸引越来越多的人开始使用扫码支付.某线路公交车队统计了活动刚推出一周内每一天使用扫码支付的人次,用x表示活动推出的天数,y表示每天使用扫码支付的人次(单位:十人次),统计数据如表l所示:表1根据以上数据,绘制了如右图所示的散点图.(1)根据散点图判断,在推广期内,y=a+bx与(2)根据(1)的判断结果及表1中的数据,求y关于x的回归方程,并预测活动推出第8天使用扫码支付的人次;参考数据:其中υ参考公式:对于一组数据u1,υ1,20.如图是函数的部分图像,是它与轴的两个不同交点,是之间的最高点且横坐标为,点是线段的中点.(1)求函数的解析式及上的单调增区间;(2)若时,函数的最小值为,求实数的值.21.设数列的前项和为,且.(1)求数列的通项公式;(2)若,为数列位的前项和,求;(3)在(2)的条件下,是否存在自然数,使得对一切恒成立?若存在,求出的值;若不存在,说明理由.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】由题意得,因为,所以,所以,故,故选C.2、B【解析】

给出具体角度,可以得到终边相同角的表达式.【详解】角终边相同的角可以表示为,当时,,所以答案选择B【点睛】判断两角是否是终边相同角,即判断是否相差整数倍.3、D【解析】

根据直线与平面没有公共点可知平面.将截面补全后,可确定点的位置,进而求得三角形面积的最小值.【详解】由题意,,分别是棱,,的中点,补全截面为,如下图所示:因为直线与平面没有公共点所以平面,即平面,平面平面此时位于底面对角线上,且当与底面中心重合时,取得最小值此时三角形的面积最小故选:D【点睛】本题考查了直线与平面平行、平面与平面平行的性质与应用,过定点截面的作法,属于难题.4、A【解析】

由方程得出直线的截距,逐个选项验证即可.【详解】由截距式方程可得直线的横、纵截距分别为,直线的横、纵截距分别为选项A,由的图象可得,可得直线的截距均为正数,故A正确;选项B,只有当时,才有直线平行,故B错误;选项C,只有当时,才有直线的纵截距相等,故C错误;选项D,由的图象可得,可得直线的横截距为正数,纵截距为负数,由图像不对应,故D错误;故选:A【点睛】本题考查了直线的截距式方程,需理解截距的定义,属于基础题.5、B【解析】

根据等差数列和等比数列性质可分别求得,,代入即可得到结果.【详解】由成等差数列得:由成等比数列得:,又与同号本题正确选项:【点睛】本题考查等差数列、等比数列性质的应用,易错点是忽略等比数列奇数项符号相同的特点,从而造成增根.6、D【解析】

设直线的方程为,代入点(1,0)的坐标即得解.【详解】设直线的方程为,由题得.所以直线的方程为.故选D【点睛】本题主要考查直线方程的求法,意在考查学生对该知识的理解掌握水平,属于基础题.7、A【解析】

根据圆心和半径可直接写出圆的标准方程.【详解】圆心为(-1,0),半径为,则圆的方程为故选:A【点睛】本题考查圆的标准方程的求解,属于简单题.8、D【解析】

A项,可能相交或异面,当时,存在,,故A项错误;B项,可能相交或垂直,当

时,存在,,故B项错误;C项,可能相交或垂直,当

时,存在,,故C项错误;D项,垂直于同一平面的两条直线相互平行,故D项正确,故选D.本题主要考查的是对线,面关系的理解以及对空间的想象能力.考点:直线与平面、平面与平面平行的判定与性质;直线与平面、平面与平面垂直的判定与性质.9、A【解析】

根据平面向量加法及数乘的几何意义,即可求解,得到答案.【详解】根据平面向量加法及数乘的几何意义,可得,故选A.【点睛】本题主要考查了平面向量的加法法则的应用,其中解答中熟记平面向量的加法法则是解答的关键,着重考查了推理与运算能力,属于基础题.10、C【解析】

利用向量乘法公式得到答案.【详解】向量,,,的夹角为45°故答案选C【点睛】本题考查了向量的运算,意在考查学生的计算能力.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

根据已知可得直三棱柱的内切球半径为,代入球的表面积公式,即可求解.【详解】由题意,因为,所以,可得的内切圆的半径为,又由,故直三棱柱的内切球半径为,所以此时的最大值为.故答案为:.【点睛】本题主要考查了直三棱柱的几何结构特征,以及组合体的性质和球的表面积的计算,着重考查了空间想象能力,以及推理与计算能力,属于中档试题.12、【解析】

化简,再利用基本不等式以及辅助角公式求出的最大值,即可得到的最大值【详解】由题可得:由于,,所以,由基本不等式可得:由于,所以所以,即的最大值为故答案为【点睛】本题考查三角函数的最值问题,涉及二倍角公式、基本不等式、辅助角公式等知识点,属于中档题。13、【解析】

取的中点为坐标原点,、所在直线分别为轴、轴建立平面直角坐标系,设点的坐标为,其中,利用数量积的坐标运算将转化为有关的一次函数的值域问题,可得出的取值范围.【详解】如下图所示:取的中点为坐标原点,、所在直线分别为轴、轴建立平面直角坐标系,则点、、,设点,其中,,,,因此,的取值范围是,故答案为.【点睛】本题考查平面向量数量积的取值范围,可以利用基底向量法以及坐标法求解,在建系时应充分利用对称性来建系,另外就是注意将动点所在的直线变为坐标轴,可简化运算,考查运算求解能力,属于中等题.14、【解析】根据正弦定理得15、20【解析】

先由条件求出,算出,然后利用二次函数的知识求出即可【详解】设的公差为,由题意得即,①即,②由①②联立得所以故当时,取得最大值400故答案为:20【点睛】等差数列的是关于的二次函数,但要注意只能取正整数.16、【解析】

由函数的图象的顶点坐标求出,由半个周期求出,最后将特殊点的坐标求代入解析式,即可求得的值.【详解】解:由图象可得,,得.,将点代入函数解析式,得,,,又因为,所以故答案为:【点睛】本题考查由的部分图象确定其解析式.(1)根据函数的最高点的坐标确定(2)根据函数零点的坐标确定函数的周期求(3)利用最值点的坐标同时求的取值,即可得到函数的解析式.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】

(1)将写成顶点式,然后根据最小值和对称轴进行分析;(2)先将表示出来,然后利用换元法以及对勾函数的单调性求解值域.【详解】解:(1)∵又∵∴对称轴为∵值域为∴且∴,,则函数(2)∵∵∴令,则∴∵∴,则所求值域为【点睛】对于形如的函数,其单调增区间是:和,单调减区间是:和.18、(1)(2)【解析】

(1)设,分别在和中利用余弦定理计算,联立方程组,求得的值,再由余弦定理,即可求解的值;(2)由(1)的结论,计算,利用三角形的面积公式,即可求解.【详解】(1),则,所以在中,由余弦定理得,在中,由余弦定理得,所以,解得,所以,由余弦定理得(2)由(1)求得,,所以,所以.【点睛】本题主要考查了余弦定理和三角形的面积公式的应用,其中在解有关三角形的题目时,要抓住题设条件和利用某个定理的信息,合理应用正弦定理和余弦定理列出方程是解答的关键,着重考查了运算与求解能力,属于基础题.19、(1)y=c⋅dx【解析】

(1)根据散点图判断,y=c⋅dx适宜;(2)y=c⋅dx,两边同时取常用对数得:【详解】(1)根据散点图判断,y=c⋅dx适宜作为扫码支付的人数y关于活动推出天数(2)∵y=c⋅dx,两边同时取常用对数得:1gy=1g(c⋅d设1gy=v,∴v=1gc+1gd⋅x∵x=4,v∴lgd=把样本中心点(4,1.54)代入v=1gc+1gd⋅x,得:∴v=0.54+0.25x,∴y关于x的回归方程式:y=把x=8代入上式,y=3.47×活动推出第8天使用扫码支付的人次为3470;【点睛】本题考查回归分析,考查线性回归直线过样本中心点,在一组具有相关关系的变量的数据间,这样的直线可以画出许多条,而其中的一条能最好地反映x与Y之间的关系,这条直线过样本中心点.线性回归方程适用于具有相关关系的两个变量,对于具有确定关系的两个变量是不适用的,线性回归方程得到的预测值是预测变量的估计值,不是准确值.20、(1)(2)【解析】

(1)由点是线段的中点,可得和的坐标,从而得最值和周期,可得和,再代入顶点坐标可得,再利用整体换元可求单调区间;(2)令得到,讨论二次函数的对称轴与区间的位置关系求最值即可.【详解】(1)因为为中点,,所以,,则,,又因为,则所以,由又因为,则所以令又因为则单调递增区间为.(2)因为所以令,则对称轴为①当时,即时,;②当时,即时,(舍)③当时,即时,(舍)综上可得:.【点睛】本题主要考查了利用三角函数的图象求解三角函数的解析式及二次函数轴动区间定的最值问题,考查了学生的分类讨论思想及计算能力,属于中档题.21、(1)(2)(3)【解析】

(1)根据题干可推导得到,进而得到数列是以为首项,为公比的等比数列,由等比数列的通项公式得到结果;(2)由

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论