版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省同煤二中2025届数学高一下期末学业水平测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知圆的圆心为(-2,1),其一条直径的两个端点恰好在两坐标轴上,则这个圆的方程是()A. B.C. D.2.函数的零点所在的一个区间是().A. B. C. D.3.下列说法中正确的是(
)A.棱柱的侧面可以是三角形B.正方体和长方体都是特殊的四棱柱C.所有的几何体的表面都能展成平面图形D.棱柱的各条棱都相等4.若函数的最小正周期为2,则()A.1 B.2 C. D.5.在中,角的对边分别是,若,则()A. B.或 C.或 D.6.是边AB上的中点,记,,则向量()A. B.C. D.7.把一块长是10,宽是8,高是6的长方形木料削成一个体积最大的球,这个球的体积等于()A. B.480 C. D.8.已知角的终边经过点,则A. B. C. D.9.ΔABC的内角A,B,C的对边分别为a,b,c.已知C=60°,b=6,c=3,则A=A.45° B.60° C.75° D.90°10.若不等式对任意,恒成立,则实数的取值范围是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.如图所示,已知,用表示.12.已知为直线,为平面,下列四个命题:①若,则;②若,则;③若,则;④若,则.其中正确命题的序号是______.13.在中,给出如下命题:①是所在平面内一定点,且满足,则是的垂心;②是所在平面内一定点,动点满足,,则动点一定过的重心;③是内一定点,且,则;④若且,则为等边三角形,其中正确的命题为_____(将所有正确命题的序号都填上)14.直线的倾斜角为__________.15.若,则______(用表示).16.如图,在正方体中,有以下结论:①平面;②平面;③;④异面直线与所成的角为.则其中正确结论的序号是____(写出所有正确结论的序号).三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知不等式ax2-3x+6>4的解集为{x|x<1(1)求a,b;(2)解关于x的不等式a18.(1)已知圆经过和两点,若圆心在直线上,求圆的方程;(2)求过点、和的圆的方程.19.如图,正方体的棱长为2,E,F分别为,AC的中点.(1)证明:平面;(2)求三棱锥的体积.20.已知向量,,其中为坐标原点.(1)若,求向量与的夹角;(2)若对任意实数都成立,求实数的取值范围.21.某校从参加高三模拟考试的学生中随机抽取名学生,将其数学成绩(均为整数)分成六段后得到如下部分频率分布直方图.观察图形的信息,回答下列问题:(1)求分数在内的频率,并补全这个频率分布直方图;(2)统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计本次考试的平均分;(3)用分层抽样的方法在分数段为的学生中抽取一个容量为的样本,将该样本看成一个总体,从中任取个,求至多有人在分数段内的概率.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】设直径的两个端点分别A(a,2)、B(2,b),圆心C为点(-1,1),由中点坐标公式得解得a=-4,b=1.∴半径r=∴圆的方程是:(x+1)1+(y-1)1=5,即x1+y1+4x-1y=2.故选C.2、B【解析】
判断函数的单调性,利用f(﹣1)与f(1)函数值的大小,通过零点存在性定理判断即可【详解】函数f(x)=2x+3x是增函数,f(﹣1)=<1,f(1)=1+1=1>1,可得f(﹣1)f(1)<1.由零点存在性定理可知:函数f(x)=2x+3x的零点所在的一个区间(﹣1,1).故选:B.【点睛】本题考查零点存在性定理的应用,考查计算能力,注意函数的单调性的判断.3、B【解析】试题分析:棱柱的侧面是平行四边形,不可能是三角形,所以A不正确;球的表面就不能展成平面图形,所以C不正确;棱柱的侧棱与底面边长不一定相等,所以D不正确.考点:本小题主要考查空间几何体的性质.点评:解决此类问题的主要依据是空间几何体的性质,需要学生有较强的空间想象能力.4、C【解析】
根据可求得结果.【详解】由题意知:,解得:本题正确选项:【点睛】本题考查余弦型函数最小正周期的求解问题,属于基础题.5、D【解析】
直接利用正弦定理,即可得到本题答案,记得要检验,大边对大角.【详解】因为,所以,又,所以,.故选:D【点睛】本题主要考查利用正弦定理求角.6、C【解析】由题意得,∴.选C.7、A【解析】
由题意知,此球是棱长为6的正方体的内切球,根据其几何特征知,此球的直径与正方体的棱长是相等的,故可得球的直径为6,再由球的体积公式求解即可.【详解】解:由已知可得球的直径为6,故半径为3,其体积是,故选:.【点睛】本题考查长方体内切球的几何特征,以及球的体积公式,属于基础题.8、A【解析】
根据三角函数的定义,求出,即可得到的值.【详解】因为,,所以.故选:A.【点睛】本题主要考查已知角终边上一点,利用三角函数定义求三角函数值,属于基础题.9、C【解析】
利用正弦定理求出sinB的值,由b<c得出B<C,可得出角B的值,再利用三角形的内角和定理求出角A【详解】由正弦定理得bsinB=∵b<c,则B<C,所以,B=45∘,由三角形的内角和定理得故选:C.【点睛】本题考查利用正弦定理解三角形,也考查了三角形内角和定理的应用,在解题时要注意正弦值所对的角有可能有两角,可以利用大边对大角定理或两角之和小于180∘10、B【解析】∵不等式对任意,恒成立,∴,∵,当且仅当,即时取等号,∴,∴,∴,∴实数的取值范围是,故选B.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
可采用向量加法和减法公式的线性运算进行求解【详解】由,整理得【点睛】本题考查向量的线性运算,解题关键在于将所有向量通过向量的加法和减法公式转化成基底向量,属于中档题12、③④【解析】
①和②均可以找到不符合题意的位置关系,则①和②错误;根据线面垂直性质定理和空间中的平行垂直关系可知③和④正确.【详解】若,此时或,①错误;若,此时或异面,②错误;由线面垂直的性质定理可知,若,则,③正确;两条平行线中的一条垂直于一个平面,则另一条直线必垂直于该平面,可知④正确本题正确结果:③④【点睛】本题考查空间中的平行与垂直关系相关命题的判断,考查学生对于平行与垂直的判定和性质的掌握情况.13、①②④.【解析】
①:运用已知的式子进行合理的变形,可以得到,进而得到,再次运用等式同样可以得到,,这样可以证明出是的垂心;②:运用平面向量的减法的运算法则、加法的几何意义,结合平面向量共线定理,可以证明本命题是真命题;③:运用平面向量的加法的几何意义以及平面向量共线定理,结合面积公式,可证明出本结论是错误的;④:运用平面向量的加法几何意义和平面向量的数量积的定义,可以证明出本结论是正确的.【详解】①:,同理可得:,,所以本命题是真命题;②:,设的中点为,所以有,因此动点一定过的重心,故本命题是真命题;③:由,可得设的中点为,,,故本命题是假命题;④:由可知角的平分线垂直于底边,故是等腰三角形,由可知:,所以是等边三角形,故本命题是真命题,因此正确的命题为①②④.【点睛】本题考查了平面向量的加法的几何意义和平面向量数量积的运算,考查了数形结合思想.14、【解析】试题分析:由直线方程可知斜率考点:直线倾斜角与斜率15、【解析】
直接利用诱导公式化简求解即可.【详解】解:,则,故答案为:.【点睛】本题考查诱导公式的应用,三角函数化简求值,考查计算能力,属于基础题.16、①③【解析】
①:利用线面平行的判定定理可以直接判断是正确的结论;②:举反例可以判断出该结论是错误的;③:可以利用线面垂直的判定定理,得到线面垂直,再利用线面垂直的性质定理可以判断是正确的结论;④:可以通过,可以判断出异面直线与所成的角为,即本结论是错误的,最后选出正确的结论序号.【详解】①:平面,平面平面,故本结论是正确的;②:在正方形中,,显然不垂直,而,所以不互相垂直,要是平面,则必有互相垂直,显然是不可能的,故本结论是错误的;③:平面,平面,,在正方形中,,平面,,所以平面,而平面,故,因此本结论是正确的;④:因为,所以异面直线与所成的角为,在正方形中,,故本结论是错误的,因此正确结论的序号是①③.【点睛】本题考查了线面平行的判定定理、线面垂直的判定定理、性质定理,考查了异面直线所成的角、线面垂直的性质.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)a=1,b=2;(2)①当c>2时,解集为{x|2<x<c};②当c<2时,解集为{x|c<x<2};③当c=2时,解集为∅.【解析】
(1)根据不等式ax2﹣3x+6>4的解集,利用根与系数的关系,求得a、b的值;(2)把不等式ax2﹣(ac+b)x+bc<0化为x2﹣(2+c)x+2c<0,讨论c的取值,求出对应不等式的解集.【详解】(1)因为不等式ax2﹣3x+6>4的解集为{x|x<1,或x>b},所以1和b是方程ax2﹣3x+2=0的两个实数根,且b>1;由根与系数的关系,得1+b=3解得a=1,b=2;(2)所求不等式ax2﹣(ac+b)x+bc<0化为x2﹣(2+c)x+2c<0,即(x﹣2)(x﹣c)<0;①当c>2时,不等式(x﹣2)(x﹣c)<0的解集为{x|2<x<c};②当c<2时,不等式(x﹣2)(x﹣c)<0的解集为{x|c<x<2};③当c=2时,不等式(x﹣2)(x﹣c)<0的解集为∅.【点睛】本题考查了不等式的解法与应用问题,也考查了不等式与方程的关系,考查了分类讨论思想,是中档题.18、(1);(2)【解析】
(1)由直线AB的斜率,中点坐标,写出线段AB中垂线的直线方程,与直线x-2y-3=0联立即可求出交点的坐标即为圆心的坐标,再根据两点间的距离公式求出圆心到点A的距离即为圆的半径,根据圆心坐标与半径写出圆的标准方程即可;(2)设圆的方程为,代入题中三点坐标,列方程组求解即可【详解】(1)由点和点可得,线段的中垂线方程为.∵圆经过和两点,圆心在直线上,∴,解得,即所求圆的圆心,∴半径,所求圆的方程为;(2)设圆的方程为,∵圆过点、和,∴列方程组得解得,∴圆的方程为.【点睛】本题考查了圆的方程求解,考查了待定系数法及运算能力,属于中档题.19、(1)证明见解析;(2)【解析】
(1)可利用线线平行来证明线面平行(2)可采用等体积法进行求解【详解】证明:(1)如图,连结BD;因为四边形ABCD为正方形,所以BD交AC于F且F为BD中点;又因为E为中点,所以;因为平面,平面,所以平面;(2)三棱锥的体积.【点睛】本题考查了线面平行的证明及锥体体积的求解方法,证线面平行一般是通过证线线平行来证明,三棱锥的体积常用等体积法转换底面和高进行求解.20、(1)或;(2)或.【解析】
(1)按向量数量积的定义先求夹角余弦,再求得夹角;(2)不等式化为恒成立,令取1和-1代入解不等式组即可得.【详解】(1)由题意,,记向量与的夹角为,又,则,当时,,,当时,,.(2),由得,∵,∴,∴,解得或.【点睛】本题考查向量模与夹角,考查不等式恒成立问题,不等式中把作为一个整体,它是关于的一次不等式,因此要使它恒成立,只要取1和-1时均成立即可.21、(1)0.3,直方图见解析;(2)121;(3).【解析】
(1)频率分布直方图中,小矩形的面积等于这一组的频率,而频率的和等于1,可求出分数在内的频率,即可求出矩形的高,画出图象即可;(2)同一组数据常用该组区间的中点值作为代表,将中点值与每一组的频率相差再求出它们的和即可求出本次考试的平均分;(3)先计算、分数段的人数,然后按照比例进行抽取,设从样本中任取2人,至多有1人在分数段为事件,然后列出基本事件空间包含的基本事件,以及事件包含的基本事件,最后将包含事件的个数求出题目比值即可.【详解】(1)分数在[120,130)内的频率为:1-(0.1+0.15+0.15+0.25+0.05)=1-0.7=0.3,,补全后的直方图如下:(2)平均分为:95×0.1+105×0.15+115×0.15+125×0.3+135×0.25+145×0.05=121.(3)由题意,[110,120)分数段的人数为:60×0.15=9人,[120,130)分数段的人数为:60×0.3=18人.∵用分层抽样的方法在分数段为[110,13
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五版电商平台客户数据保密及隐私保护合同3篇
- 二零二五版农业产业化合同管理与农产品质量安全协议3篇
- 二零二五版智能广告终端设备投放与维护合同3篇
- 二零二五年绿色环保抵押贷款合同范本分享3篇
- 二零二五版一期临床试验统计分析合同3篇
- 二零二五年度辣椒种植与冷链物流运输合同3篇
- 二零二五版餐厅智能点餐系统维护与升级合同3篇
- 二零二五年度餐饮企业承包经营与品牌升级合同3篇
- 二零二五版智能签约二手房购房合同范本2篇
- 二零二五版新能源汽车电池购销合同样本3篇
- 冬春季呼吸道传染病防控
- 中介费合同范本(2025年)
- 《kdigo专家共识:补体系统在肾脏疾病的作用》解读
- 生产调度员岗位面试题及答案(经典版)
- 【物 理】2024-2025学年八年级上册物理寒假作业人教版
- 交通运输安全生产管理规范
- 电力行业 电力施工组织设计(施工方案)
- 《法制宣传之盗窃罪》课件
- 通信工程单位劳动合同
- 查对制度 课件
- 2024-2030年中国猪肉市场销售规模及竞争前景预测报告~
评论
0/150
提交评论