陕西省延安市实验中学2025届数学高一下期末考试模拟试题含解析_第1页
陕西省延安市实验中学2025届数学高一下期末考试模拟试题含解析_第2页
陕西省延安市实验中学2025届数学高一下期末考试模拟试题含解析_第3页
陕西省延安市实验中学2025届数学高一下期末考试模拟试题含解析_第4页
陕西省延安市实验中学2025届数学高一下期末考试模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

陕西省延安市实验中学2025届数学高一下期末考试模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.等比数列中,,,则公比()A.1 B.2 C.3 D.42.如图,为了测量山坡上灯塔的高度,某人从高为的楼的底部处和楼顶处分别测得仰角为,,若山坡高为,则灯塔高度是()A. B. C. D.3.设变量、满足约束条件,则目标函数的最大值为()A.2 B.3 C.4 D.94.已知,则比多了几项()A.1 B. C. D.5.将函数的图象向右平移个单位长度得到图像,则下列判断错误的是()A.函数的最小正周期是 B.图像关于直线对称C.函数在区间上单调递减 D.图像关于点对称6.已知,,,,则()A. B.C. D.7.在中,若,则是()A.等腰三角形 B.等边三角形C.直角三角形 D.等腰直角三角形8.()A.0 B. C. D.19.从一批产品中取出两件产品,事件“至少有一件是次品”的对立事件是A.至多有一件是次品 B.两件都是次品C.只有一件是次品 D.两件都不是次品10.已知,,下列不等式成立的是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若,且,则的最小值是______.12.已知数列中,且当时,则数列的前项和=__________.13.已知角的终边上一点P落在直线上,则______.14.已知等比数列{an}为递增数列,且,则数列{an}的通项公式an=______________.15.如图,二面角等于,、是棱上两点,、分别在半平面、内,,,且,则的长等于______.16.如图所示,已知点,单位圆上半部分上的点满足,则向量的坐标为________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.经观测,某公路段在某时段内的车流量(千辆/小时)与汽车的平均速度(千米/小时)之间有函数关系:.(1)在该时段内,当汽车的平均速度为多少时车流量最大?最大车流量为多少?(精确到0.01)(2)为保证在该时段内车流量至少为10千辆/小时,则汽车的平均速度应控制在什么范围内?18.已知函数.(1)求的最小正周期;(2)求在区间上的最大值和最小值.19.在梯形ABCD中,,,,.(1)求AC的长;(2)求梯形ABCD的高.20.已知数列满足:.(1)若为等差数列,求的通项公式;(2)若单调递增,求的取值范围;21.如下图,长方体ABCD-A1B1C1D1中,(1)当点E在AB上移动时,三棱锥D-D(2)当点E在AB上移动时,是否始终有D1

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

将与用首项和公比表示出来,解方程组即可.【详解】因为,且,故:,且,解得:,即,故选:B.【点睛】本题考查求解等比数列的基本量,属基础题.2、B【解析】

过点作于点,过点作于点,在中由正弦定理求得,在中求得,从而求得灯塔的高度.【详解】过点作于点,过点作于点,如图所示,在中,由正弦定理得,,即,,在中,,又山高为,则灯塔的高度是.故选.【点睛】本题考查了解三角形的应用和正弦定理,考查了转化思想,属中档题.3、D【解析】

由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,把最优解的坐标代入目标函数得结论.【详解】画出满足约束条件的可行域,如图,画出可行域,,,,平移直线,由图可知,直线经过时目标函数有最大值,的最大值为9.故选D.【点睛】本题主要考查线性规划中,利用可行域求目标函数的最值,属于简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.4、D【解析】

由写出,比较两个等式得多了几项.【详解】由题意,则,那么:,又比多了项.故选:D.【点睛】本题考查对函数的理解和带值计算问题,属于基础题.5、C【解析】

根据三角函数的图象平移关系求出的解析式,结合函数的单调性,对称性分别进行判断即可.【详解】由题意,将函数的图象向右平移个单位长度,可得,对于,函数的最小正周期为,所以该选项是正确的;对于,令,则为最大值,函数图象关于直线,对称是正确的;对于中,,则,,则函数在区间上先减后增,不正确;对于中,令,则,图象关于点对称是正确的,故选.【点睛】本题主要考查命题的真假判断,涉及三角函数的单调性,对称性,求出解析式是解决本题的关键.6、C【解析】

分别求出的值再带入即可.【详解】因为,所以因为,所以所以【点睛】本题考查两角差的余弦公式.属于基础题.7、A【解析】

首先根据降幂公式把等式右边降幂你,再根据把换成与的关系,进一步化简即可.【详解】,,,选A.【点睛】本题主要考查了二倍角,两角和与差的余弦等,需熟记两角和与差的正弦余弦等相关公式,以及特殊三角函数的值是解决本题的关键,属于基础题.8、C【解析】试题分析:考点:两角和正弦公式9、D【解析】试题分析:根据对立事件的定义,至少有n个的对立事件是至多有n﹣1个,由事件A:“至少有一件次品”,我们易得结果.解:∵至少有n个的否定是至多有n﹣1个又∵事件A:“至少有一件次品”,∴事件A的对立事件为:至多有零件次品,即是两件都不是次品.故答案为D.点评:本题考查的知识点是互斥事件和对立事件,互斥事件关键是要抓住不可能同时发生的要点,对立事件则要抓住有且只有一个发生,可以转化命题的否定,集合的补集来进行求解.10、A【解析】

由作差法可判断出A、B选项中不等式的正误;由对数换底公式以及对数函数的单调性可判断出C选项中不等式的正误;利用指数函数的单调性可判断出D选项中不等式的正误.【详解】对于A选项中的不等式,,,,,,,,A选项正确;对于B选项中的不等式,,,,,,,B选项错误;对于C选项中的不等式,,,,,,,即,C选项错误;对于D选项中的不等式,,函数是递减函数,又,所以,D选项错误.故选A.【点睛】本题考查不等式正误的判断,常见的比较大小的方法有:(1)比较法;(2)中间值法;(3)函数单调性法;(4)不等式的性质.在比较大小时,可以结合不等式的结构选择合适的方法来比较,考查推理能力,属于中等题.二、填空题:本大题共6小题,每小题5分,共30分。11、8【解析】

利用的代换,将写成,然后根据基本不等式求解最小值.【详解】因为(即取等号),所以最小值为.【点睛】已知,求解()的最小值的处理方法:利用,得到,展开后利用基本不等式求解,注意取等号的条件.12、【解析】

先利用累乘法计算,再通过裂项求和计算.【详解】,数列的前项和故答案为:【点睛】本题考查了累乘法,裂项求和,属于数列的常考题型.13、【解析】

由于角的终边上一点P落在直线上,可得,根据二倍角公式以及三角函数基本关系,可得,代入,可求得结果.【详解】因为角的终边上一点P落在直线上,所以,.故答案为:【点睛】本题考查同角三角函数的基本关系,巧用“1”是解决本题的关键.14、【解析】设数列的首项为,公比为q,则,所以,由得解得,因为数列为递增数列,所以,,所以考点定位:本题考查等比数列,意在考查考生对等比数列的通项公式的应用能力15、1【解析】

由已知中二面角α﹣l﹣β等于110°,A、B是棱l上两点,AC、BD分别在半平面α、β内,AC⊥l,BD⊥l,且AB=AC=BD=1,由,结合向量数量积的运算,即可求出CD的长.【详解】∵A、B是棱l上两点,AC、BD分别在半平面α、β内,AC⊥l,BD⊥l,又∵二面角α﹣l﹣β的平面角θ等于110°,且AB=AC=BD=1,∴,60°,∴故答案为1.【点睛】本题考查的知识点是与二面角有关的立体几何综合题,其中利用,结合向量数量积的运算,是解答本题的关键.16、【解析】

设点,由和列方程组解出、的值,可得出向量的坐标.【详解】设点的坐标为,则,由,得,解得,因此,,故答案为.【点睛】本题考查向量的坐标运算,解题时要将一些条件转化为与向量坐标相关的等式,利用方程思想进行求解,考查运算求解能力,属于中等题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)v=40千米/小时,车流量最大,最大值为11.08千辆/小时(2)汽车的平均速度应控制在25≤v≤64这个范围内【解析】

(1)将已知函数化简,利用基本不等式求车流量y最大值;

(2)要使该时段内车流量至少为10千辆/小时,即使,解之即可得汽车的平均速度的控制范围.【详解】解:(1)=≤=≈11.08,当v=,即v=40千米/小时,车流量最大,最大值为11.08千辆/小时.(2)据题意有:,化简得,即,所以,所以汽车的平均速度应控制在这个范围内.【点睛】本题以已知函数关系式为载体,考查基本不等式的使用,考查解不等式,属于基础题.18、(1)(2)最大值为2,最小值为【解析】

(1)先将函数化简为,根据公式求最小正周期.

(2)由,则,可求出函数的最值.【详解】(1)所以的最小正周期为:.(2)由(1)有,则则当,即时,有最小值.当即,时,有最大值2.所以在区间上的最大值为2,最小值为.【点睛】本题考查三角函数化简、求最小正周期和函数在闭区间上的最值,属于中档题.19、(1)(2).【解析】

(1)首先计算,再利用正弦定理计算得到答案.(2)中,由余弦定理得,作高,在直角三角形中利用三角函数得到高的大小.【详解】(1)在中,,.由正弦定理得:,即.(2)在中,由余弦定理得:,整理得,解得.过点D作于E,则DE为梯形ABCD的高.,,.在直角中,.即梯形ABCD的高为.【点睛】本题考查了正弦定理,余弦定理,意在考查学生的计算能力和解决问题的能力.20、(1)(2)【解析】

(1)设出的通项公式,根据计算出对应的首项和公差,即可求解出通项公式;(2)根据条件得到,得到的奇数项成等差数列,的偶数项也成等差数列,根据单调递增列出关于的不等式,求解出范围即可.【详解】(1)设,所以,所以,所以,所以;(2)因为,所以,所以,又因为,所以,当为奇数时,,当为偶数时,,因为单调递增,所以,所以,所以.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论