版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届北京市西城区普通中学数学高一下期末复习检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.《张丘建算经》中如下问题:“今有马行转迟,次日减半,疾五日,行四百六十五里,问日行几何?”根据此问题写出如下程序框图,若输出,则输入m的值为()A.240 B.220 C.280 D.2602.已知某路段最高限速60km/h,电子监控测得连续6辆汽车的速度用茎叶图表示如图所示(单位:km/h),若从中任抽取2辆汽车,则恰好有1辆汽车超速的概率为()A. B. C. D.3.单位圆中,的圆心角所对的弧长为()A. B. C. D.4.“”是“、、”成等比数列的()条件A.充分非必要 B.必要非充分 C.充要 D.既非充分又非必要5.若圆的半径为4,a、b、c为圆的内接三角形的三边,若abc=16,则三角形的面积为()A.2 B.8 C. D.6.从甲、乙、丙三人中,任选两名代表,甲被选中的概率为()A. B. C. D.7.等差数列中,已知,则()A.1 B.2 C.3 D.48.设a>0,b>0,若是和的等比中项,则的最小值为()A.6 B. C.8 D.99.已知直线与直线平行,则实数m的值为()A.3 B.1 C.-3或1 D.-1或310.要得到函数的图象,只需将函数的图象()A.向左平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向右平移个单位长度二、填空题:本大题共6小题,每小题5分,共30分。11.函数的定义域为A,若时总有为单函数.例如,函数=2x+1()是单函数.下列命题:①函数=(xR)是单函数;②若为单函数,且则;③若f:AB为单函数,则对于任意bB,它至多有一个原象;④函数f(x)在某区间上具有单调性,则f(x)一定是单函数.其中的真命题是.(写出所有真命题的编号)12.200名职工年龄分布如图所示,从中随机抽取40名职工作样本,采用系统抽样方法,按1~200编号,分为40组,分别为1~5,6~10,…,196~200,若第5组抽取号码为22,则第8组抽取号码为________.若采用分层抽样,40岁以下年龄段应抽取________人.13.在△ABC中,,则________.14.《莱茵德纸草书》是世界上最古老的数学著作之一.书中有一道这样的题目:把100个面包分给5个人,使每人所得份量成等差数列,且较大的三份之和的是较小的两份之和,则最小一份的量为___.15.已知实数,是与的等比中项,则的最小值是______.16.设常数,函数,若的反函数的图像经过点,则_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知数列的前n项和为,且,.(1)求数列的通项公式;(2)若等差数列满足,且,,成等比数列,求c.18.在中,内角,,的对边分别为,已知.(1)求角的大小;(2)若,且,求的面积.19.已知三棱锥的体积为1.在侧棱上取一点,使,然后在上取一点,使,继续在上取一点,使,……按上述步骤,依次得到点,记三棱锥的体积依次构成数列,数列的前项和.(1)求数列和的通项公式;(2)记,为数列的前项和,若不等式对一切恒成立,求实数的取值范围.20.如图所示,是一个矩形花坛,其中米,米.现将矩形花坛扩建成一个更大的矩形花坛,要求:在上,在上,对角线过点,且矩形的面积小于150平方米.(1)设长为米,矩形的面积为平方米,试用解析式将表示成的函数,并确定函数的定义域;(2)当的长度是多少时,矩形的面积最小?并求最小面积.21.在等比数列中,,.(1)求的通项公式;(2)若,求数列的前项和.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
根据程序框图,依次循环计算,可得输出的表达式.结合,由等比数列求和公式,即可求得的值.【详解】由程序框图可知,此时输出.所以即由等比数列前n项和公式可得解得故选:A【点睛】本题考查了循环结构程序框图的应用,等比数列求和的应用,属于中档题.2、A【解析】
求出基本事件的总数,以及满足题意的基本事件数目,即可求解概率.【详解】解:由题意任抽取2辆汽车,其速度分别为:,共15个基本事件,其中恰好有1辆汽车超速的有,,共8个基本事件,则恰好有1辆汽车超速的概率为:,故选:A.【点睛】本题考查古典概型的概率的求法,属于基本知识的考查.3、B【解析】
将转化为弧度,即可得出答案.【详解】,因此,单位圆中,的圆心角所对的弧长为.故选B.【点睛】本题考查角度与弧度的转化,同时也考查了弧长的计算,考查计算能力,属于基础题.4、B【解析】
利用充分必要条件直接推理即可【详解】若“、、”成等比数列,则;成立反之,若“”,如果a=b=G=0则、、”不成等比数列,故选B.【点睛】本题考查充分必要条件的判定,熟记等比数列的性质是关键,是基础题5、C【解析】
试题分析:由正弦定理可知,∴,∴.考点:正弦定理的运用.6、D【解析】
采用列举法写出总事件,再结合古典概型公式求解即可【详解】被选出的情况具体有:甲乙、甲丙、乙丙,甲被选中有两种,则故选:D7、B【解析】
已知等差数列中一个独立条件,考虑利用等差中项求解.【详解】因为为等差数列,所以,由,,故选B.【点睛】本题考查等差数列的性质,等差数列中若,则,或用基本量、表示,整体代换计算可得,属于简单题.8、D【解析】
试题分析:由题意a>0,b>0,且是和的等比中项,即,则,当且仅当时,即时取等号.考点:重要不等式,等比中项9、B【解析】
两直线平行应该满足,利用系数关系及可解得m.【详解】两直线平行,可得(舍去).选B.【点睛】两直线平行的一般式对应关系为:,若是已知斜率,则有,截距不相等.10、C【解析】
由,则只需将函数的图象向左平移个单位长度.【详解】解:因为,所以要得到函数的图象,只需将函数的图象向左平移个单位长度.故选:C.【点睛】本题考查了三角函数图像的平移变换,属基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、②③【解析】
命题①:对于函数,设,故和可能相等,也可能互为相反数,即命题①错误;命题②:假设,因为函为单函数,所以,与已知矛盾,故,即命题②正确;命题③:若为单函数,则对于任意,,假设不只有一个原象与其对应,设为,则,根据单函数定义,,又因为原象中元素不重复,故函数至多有一个原象,即命题③正确;命题④:函数在某区间上具有单调性,并不意味着在整个定义域上具有单调性,即命题④错误,综上可知,真命题为②③.故答案为②③.12、371【解析】
由系统抽样,编号是等距出现的规律可得,分层抽样是按比例抽取人数.【详解】第8组编号是22+5+5+5=37,分层抽样,40岁以下抽取的人数为50%×40=1(人).故答案为:37;1.【点睛】本题考查系统抽样和分层抽样,属于基础题.13、【解析】
因为所以注意到:故.故答案为:14、【解析】
设此等差数列为{an},公差为d,则(a3+a4+a5)×=a1+a2,即,解得a1=,d=.最小一份为a1,故答案为.15、【解析】
通过是与的等比中项得到,利用均值不等式求得最小值.【详解】实数是与的等比中项,,解得.则,当且仅当时,即时取等号.故答案为:.【点睛】本题考查了等比中项,均值不等式,1的代换是解题的关键.16、1【解析】
反函数图象过(2,1),等价于原函数的图象过(1,2),代点即可求得.【详解】依题意知:f(x)=lg(x+a)的图象过(1,2),∴lg(1+a)=2,解得a=1.故答案为:1【点睛】本题考查了反函数,熟记其性质是关键,属基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】
(1)根据题意,数列为1为首项,4为公差的等差数列,根据等差数列通项公式计算即可;(2)由(1)可求数列的前n项和为,根据,,成等差数列及,,成等比数列,利用等差、等比数列性质可求出c.【详解】(1),,,故数列是以1为首项,4为公差的等差数列..(2)由(1)知,,,,,,法1:,,成等比数列,,即,整理得:,或.①当时,,所以(定值),满足为等差数列,②当时,,,,,不满足,故此时数列不为等差数列(舍去).法2:因为为等差数列,所以,即,解得或.①当时,满足,,成等比数列,②当时,,,,不满足,,成等比数列(舍去),综上可得.【点睛】本题考查等差数列的通项及求和,等差数列、等比数列性质的应用,解决此类问题通常借助方程思想列方程(组)求解,属于中等题.18、(1);(2).【解析】
(1)由二倍角公式得,求得则角可求;(2),得,由正弦定理得,再结合余弦定理得则面积可求【详解】(1)因为,所以,解得,因为,所以;(2)因为,所以,由正弦定理得所以,由余弦定理,,所以,所以.【点睛】本题考查二倍角公式,正余弦定理解三角形,准确计算是关键,是基础题19、(1).;(2).【解析】
(1)由三棱锥的体积公式可得是等比数列,从而可求得其通项公式,利用可求得,但要注意;(2)用错位相减法求得,化简不等式,分离参数,转化为求函数的最值.【详解】(1)由题意,∴,三棱锥的体积就是三棱锥的体积,它们都以为底面,因此它们的体积比等于它们高的比,即到平面的距离之比,又都在直线上,所以点到平面的距离之比就等于棱长的比,∴,,,∴.,则,时,,也适合.∴.(2)由(1),,,两式相减得:,∴.不等式为,即,设,则,∴当时,递增,当,递减,是中的最大项,.不等式对恒成立,则,∴或.故的范围是.【点睛】本题考查棱锥的体积,考查等比数列的通项公式,考查由求通项,考查错位相减法求和,考查不等式恒成立问题.考查数列的单调性,难度较大.对学生的运算求解能力要求较高.在由求时要注意需另外求解,证明数列单调性时可以有数列的前后项作差或作商比较.20、(1),;(2),.【解析】
(1)由可得,,∴.由,且,解得,∴函数的定
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 大学生毕业登记表自我鉴定(5篇)
- 石河子大学《历史教学技能实训》2022-2023学年第一学期期末试卷
- 石河子大学《工业药物分析综合实验》2022-2023学年第一学期期末试卷
- 石河子大学《教师语言与行为艺术》2022-2023学年第一学期期末试卷
- 沈阳理工大学《数字信号处理》2021-2022学年第一学期期末试卷
- 沈阳理工大学《美国文学史》2022-2023学年第一学期期末试卷
- 沈阳理工大学《机械工程材料》2021-2022学年第一学期期末试卷
- 沈阳理工大学《翻译工作坊》2023-2024学年第一学期期末试卷
- 合同法81条对应民法典
- 高空作业合同安全责任书模版
- 电动自行车火灾的勘查检验技术及案例分析
- 螺栓检测报告
- 碳排放介绍及相关计算方法
- 社团活动记录(足球)
- 腐蚀测量及技术
- 家庭医生签约服务在实施老年高血压患者社区护理管理中应用
- 氯化钠与氯化铵分离解析
- 关注青少年心理健康孩子的人格培养与家庭教育
- 个案面谈技巧(2016.6.15)
- 高中理科教学仪器配备标准[共121页]
- 屋面平瓦(挂瓦条铺瓦)施工方案
评论
0/150
提交评论