版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省枣庄三中等33校2025届高一数学第二学期期末监测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知两个单位向量的夹角为,则下列结论不正确的是()A.方向上的投影为 B.C. D.2.《九章算术》是我国古代数学成就的杰出代表作之一,其中《方田》章给出计算弧田面积所用的经验公式为:弧田面积(弦矢矢),弧田(如图)由圆弧和其所对弦所围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,现有圆心角为,半径等于6米的弧田,按照上述经验公式计算所得弧田面积约为()A.12平方米 B.16平方米 C.20平方米 D.24平方米3.设,,,若则,的值是()A., B.,C., D.,4.某学校高一、高二、高三年级的学生人数分别为、、人,该校为了了解本校学生视力情况,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为的样本,则应从高三年级抽取的学生人数为()A. B. C. D.5.为了得到函数的图象,只需将函数的图象()A.向左平移个单位 B.向右平移个单位C.向左平移个单位 D.向右平移个单位6.如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从中任取3个不同的数,则这3个数构成一组勾股数的概率为()A. B. C. D.7.若直线上存在点满足则实数的最大值为A. B. C. D.8.已知,且,那么a,b,,的大小关系是()A. B.C. D.9.已知数列满足,,则数列的前5项和()A.15 B.28 C.45 D.6610.已知数列满足,,则()A.4 B.-4 C.8 D.-8二、填空题:本大题共6小题,每小题5分,共30分。11.已知,则__________.12.函数是定义域为R的奇函数,当时,则的表达式为________.13.已知,是平面内两个互相垂直的单位向量,若向量满足,则的最大值是.14.直线与间的距离为________.15.某幼儿园对儿童记忆能力的量化评价值和识图能力的量化评价值进行统计分析,得到如下数据:468103568由表中数据,求得回归直线方程中的,则.16.的内角的对边分别为.若,则的面积为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在平面四边形中,.(Ⅰ)求;(Ⅱ)若,求.18.已知.(I)若函数有三个零点,求实数的值;(II)若对任意,均有恒成立,求实数的取值范围.19.设递增等差数列{an}的前n项和为Sn,已知a3=1,a4是a3和a7的等比中项,(1)求数列{an}的通项公式;(2)求数列{an}的前n项和Sn.20.已知向量,,.(1)若,求的值;(2)若,,求的值.21.已知等差数列的前n项和为,且,.(1)求;(2)设数列的前n项和为,求证:.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】试题分析:A.方向上的投影为,即,所以A正确;B.,所以B错误;C.,所以,所以C正确;D.,所以.D正确.考点:向量的数量积;向量的投影;向量的夹角.点评:熟练掌握数量积的有关性质是解决此题的关键,尤其要注意“向量的平方就等于其模的平方”这条性质.2、C【解析】
在中,由题意OA=4,∠DAO=,即可求得OD,AD的值,根据题意可求矢和弦的值,即可利用公式计算求值得解.【详解】如图,由题意可得:∠AOB=,OA=6,在中,可得:∠AOD=,∠DAO=,OD=AO=×6=3,可得:矢=6﹣3=3,由AD=AO=6×=3,可得:弦=2AD=2×3=6,所以:弧田面积=(弦×矢+矢2)=(6×3+32)=9+4.5≈20平方米.故选:C【点睛】本题考查扇形的面积公式,考查数学阅读能力和数学运算能力,属于中档题.3、B【解析】
由向量相等的充要条件可得:,列出方程组,即可求解,得到答案.【详解】由题意,向量,,,又因为,所以,所以,解得,故选B.【点睛】本题主要考查了平面向量的数乘运算及向量相等的充要条件,其中解答中熟记向量的共线条件,列出方程组求解是解答的关键,着重考查了推理与运算能力,属于基础题.4、C【解析】
设从高三年级抽取的学生人数为,根据总体中和样本中高三年级所占的比例相等列等式求出的值.【详解】设从高三年级抽取的学生人数为,由题意可得,解得,因此,应从高三年级抽取的学生人数为,故选:C.【点睛】本题考查分层抽样中的相关计算,解题时要利用总体中每层的抽样比例相等或者总体或样本中每层的所占的比相等来列等式求解,考查运算求解能力,属于基础题.5、D【解析】
由函数,根据三角函数的图象变换,即可求解,得到答案.【详解】由题意,函数,为了得到函数的图象,只需将函数的图象向右平移个单位,故选D.【点睛】本题主要考查了三角函数的图象变换,以及正弦的倍角公式的应用,着重考查了推理与运算能力,属于基础题.6、C【解析】
试题分析:从中任取3个不同的数共有10种不同的取法,其中的勾股数只有3,4,5,故3个数构成一组勾股数的取法只有1种,故所求概率为,故选C.考点:古典概型7、B【解析】
首先画出可行域,然后结合交点坐标平移直线即可确定实数m的最大值.【详解】不等式组表示的平面区域如下图所示,由,得:,即C点坐标为(-1,-2),平移直线x=m,移到C点或C点的左边时,直线上存在点在平面区域内,所以,m≤-1,即实数的最大值为-1.【点睛】本题主要考查线性规划及其应用,属于中等题.8、D【解析】
直接用作差法比较它们的大小得解.【详解】;;.故.故选:D【点睛】本题主要考查了作差法比较实数的大小,意在考查学生对这些知识的理解掌握水平,属于基础题.9、C【解析】
根据可知数列为等差数列,再根据等差数列的求和性质求解即可.【详解】因为,故数列是以4为公差,首项的等差数列.故.故选:C【点睛】本题主要考查了等差数列的判定与等差数列求和的性质与计算,属于基础题.10、C【解析】
根据递推公式,逐步计算,即可求出结果.【详解】因为数列满足,,所以,,.故选C【点睛】本题主要考查由递推公式求数列中的项,逐步代入即可,属于基础题型.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
对已知等式的左右两边同时平方,利用同角的三角函数关系式和二倍角的正弦公式,可以求出的值,再利用二倍角的余弦公式可以求出.【详解】因为,所以,即,所以.【点睛】本题考查了同角的三角函数关系,考查了二倍角的正弦公式和余弦公式,考查了数学运算能力.12、【解析】试题分析:当时,,,因是奇函数,所以,是定义域为R的奇函数,所以,所以考点:函数解析式、函数的奇偶性13、【解析】
,,是平面内两个相互垂直的单位向量,∴,∴,,,为与的夹角,∵是平面内两个相互垂直的单位向量∴,即,所以当时,即与共线时,取得最大值为,故答案为.14、【解析】
根据两平行线间的距离,,代入相应的数据,整理计算得到答案.【详解】因为直线与互相平行,所以根据平行线间的距离公式,可以得到它们之间的距离,.【点睛】本题考查两平行线间的距离公式,属于简单题.15、-0.1【解析】
分别求出和的均值,代入线性回归方程即可.【详解】由表中数据易得,,由在直线方程上,可得【点睛】此题考查线性回归方程形式,表示在回归直线上代入即可,属于简单题目.16、【解析】
本题首先应用余弦定理,建立关于的方程,应用的关系、三角形面积公式计算求解,本题属于常见题目,难度不大,注重了基础知识、基本方法、数学式子的变形及运算求解能力的考查.【详解】由余弦定理得,所以,即解得(舍去)所以,【点睛】本题涉及正数开平方运算,易错点往往是余弦定理应用有误或是开方导致错误.解答此类问题,关键是在明确方法的基础上,准确记忆公式,细心计算.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ).【解析】
(Ⅰ)在中利用余弦定理即可求得结果;(Ⅱ)在中利用正弦定理构造方程即可求得结果.【详解】(Ⅰ)在中,由余弦定理可得:(Ⅱ),在中,由正弦定理可得:,即:解得:【点睛】本题考查利用正弦定理、余弦定理解三角形的问题,考查公式的简单应用,属于基础题.18、(I)或;(II).【解析】
(I)令,将有三个零点问题,转化为有三个不同的解的解决.画出和的图像,结合图像以及二次函数的判别式分类讨论,由此求得的值.(II)令,将恒成立不等式等价转化为恒成立,通过对分类讨论,求得的最大值,由此求得的取值范围.【详解】(I)由题意等价于有三个不同的解由,可得其函数图象如图所示:联立方程:,由可得结合图象可知.同理,由可得,因为,结合图象可知,综上可得:或.(Ⅱ)设,原不就价于,两边同乘得:,设,原题等价于的最大值.(1)当时,,易得,(2),,易得,所以的最大值为16,即,故.【点睛】本小题主要考查根据函数零点个数求参数,考查数形结合的数学思想方法,考查化归与转化的数学思想方法,考查不等式恒成立问题的求解策略,考查分类讨论的数学思想,属于难题.19、(1)an=2n﹣1;(2).【解析】
(1)用首项和公差表示出已知关系,求出,可得通项公式;(2)由等差数列前项和公式得结论.【详解】(1)在递增等差数列{an}中,设公差为d>0,∵,∴,解得.∴an=﹣3+(n﹣1)×2=2n﹣1.(2)由(1)知,.【点睛】本题考查等差数列的通项公式和前项和公式,解题方法是基本量法.20、(1);(2)或【解析】
(1)根据向量平行的坐标公式得出,利用二倍角公式以及弦化切即可得出答案;(2)利用向量的模长公式得出,由二倍角公式以及降幂公式,辅助角公式得出,结合正弦函数的性质得出的值.【详解】(1)由,得,所以.所以.(2)由,得所以,所以,所以.因为,所以,所以或解得或.【点睛】本题主要考查了由向量平行求参数,模长公式,简单的三角恒等变换以及正弦函数的性质的应用,属于中档题.21、(1);(2)见解析【解析】
(1)设公差为,由,可得解得,,从而可
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 年底移动营业员个人工作总结
- 幼师个人实习总结(5篇)
- 幼师心理健康心得体会
- DB12-T 601-2022 城市轨道交通运营服务规范
- 2024年SDH光纤传输系统项目资金申请报告代可行性研究报告
- 2023年排土机投资申请报告
- 2023年驱油用超高分子量聚丙烯酰胺资金需求报告
- 非金属及其化合物教案
- 供应链运营 教案项目六 供应链绩效管理
- 无碱玻璃纤维短切丝编制说明
- 自然灾害专题
- 钢结构外挂电梯施工方案
- 猎人海力布课本剧剧本
- 飞花令题库(通用)
- GB/T 7404.1-2000内燃机车用排气式铅酸蓄电池
- GB/T 12346-2006腧穴名称与定位
- GA/T 145-2019手印鉴定文书规范
- 小学一年级家长会PPT1
- 贝加尔湖畔刘思远 简谱领唱与混声四部合唱【原调-F】
- 企业员工职业道德培训(实用)课件
- 输血查对制度-课件
评论
0/150
提交评论