版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届日喀则市数学高一下期末复习检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.的内角的对边分别为,,,若的面积为,则A. B. C. D.2.若,满足不等式组,则的最小值为()A.-5 B.-4 C.-3 D.-23.一个圆柱的底面直径与高都等于球的直径,设圆柱的侧面积为,球的表面积为,则()A. B. C. D.14.已知圆C1:x2+y2+4y+3=0,圆C2:x2+A.210-3 B.210+35.如图所示,它是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设,若在大等边三角形中随机取一点,则此点取自小等边三角形的概率是()A. B. C. D.6.在投资生产产品时,每生产需要资金200万,需场地,可获得300万;投资生产产品时,每生产需要资金300万,需场地,可获得200万,现某单位可使用资金1400万,场地,则投资这两种产品,最大可获利()A.1350万 B.1475万 C.1800万 D.2100万7.已知水平放置的是按“斜二测画法”得到如图所示的直观图,其中,,那么原中的大小是().A. B. C. D.8.在中,内角A,B,C所对的边分别是a,b,c,若,,则的面积是()A. B. C. D.9.若抛物线上一点到焦点的距离是该点到轴距离的3倍,则()A. B. C. D.710.已知函数,(,,)的部分图像如图所示,则、、的一个数值可以是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知角的顶点在坐标原点,始边与轴正半轴重合,终边经过点,则______.12.若,则=_________13.关于的不等式的解集是,则______.14.已知函数,有以下结论:①若,则;②在区间上是增函数;③的图象与图象关于轴对称;④设函数,当时,.其中正确的结论为__________.15.已知数列是公差不为0的等差数列,,且成等比数列,则的前9项和_______.16.化简sin2α+sin2β-sin2αsin2β+cos2αcos2β=______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.记Sn为等比数列的前n项和,已知S2=2,S3=-6.(1)求的通项公式;(2)求Sn,并判断Sn+1,Sn,Sn+2是否成等差数列.18.的内角所对边分别为,已知.(1)求;(2)若,,求的面积.19.如图1,ABCD为菱形,∠ABC=60°,△PAB是边长为2的等边三角形,点M为AB的中点,将△PAB沿AB边折起,使平面PAB⊥平面ABCD,连接PC、PD,如图2,(1)证明:AB⊥PC;(2)求PD与平面ABCD所成角的正弦值(3)在线段PD上是否存在点N,使得PB∥平面MC?若存在,请找出N点的位置;若不存在,请说明理由20.如图,在直三棱柱中,,,分别是,,的中点.(1)求证:平面;(2)若,求证:平面平面.21.2013年11月,总书记到湖南湘西考察时首次作出了“实事求是、因地制宜、分类指导精准扶贫”的重要指示.2014年1月,中央详细规制了精准扶贫工作模式的顶层设计,推动了“精准扶贫”思想落地.2015年1月,精准扶贫首个调研地点选择了云南,标志着精准扶贫正式开始实行.某单位立即响应党中央号召,对某村6户贫困户中的甲户进行定点帮扶,每年跟踪调查统计一次,从2015年1月1日至2018年12月底统计数据如下(人均年纯收入):年份2015年2016年2017年2018年年份代码1234收入(百元)25283235(1)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程,并估计甲户在2019年能否脱贫;(注:国家规定2019年脱贫标准:人均年纯收入为3747元)(2)2019年初,根据扶贫办的统计知,该村剩余5户贫困户中还有2户没有脱贫,现从这5户中抽取2户,求至少有一户没有脱贫的概率.参考公式:,,其中为数据的平均数.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】分析:利用面积公式和余弦定理进行计算可得。详解:由题可知所以由余弦定理所以故选C.点睛:本题主要考查解三角形,考查了三角形的面积公式和余弦定理。2、A【解析】
画出不等式组表示的平面区域,平移目标函数,找出最优解,求出的最小值.【详解】画出,满足不等式组表示的平面区域,如图所示平移目标函数知,当目标函数过点时,取得最小值,由得,即点坐标为∴的最小值为,故选A.【点睛】本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.3、D【解析】
由圆柱的侧面积及球的表面积公式求解即可.【详解】解:设圆柱的底面半径为,则,则圆柱的侧面积为,球的表面积为,则,故选:D.【点睛】本题考查了圆柱的侧面积的求法,重点考查了球的表面积公式,属基础题.4、A【解析】
求出圆C1,C2的圆心坐标和半径,作出圆C1关于直线l的对称圆C1',连结C1'C2,则C1'C2与直线l的交点即为P点,此时M点为P【详解】由圆C1:x可知圆C1圆心为0,-2圆C2圆心为3,-1圆C1关于直线l:y=x+1的对称圆为圆C连结C1'C2,交l于P,则此时M点为PC1'与圆C1'的交点关于直线l对称的点,N最小值为C1而C1∴PM+PN【点睛】本题考查了圆方程的综合应用,考查了利用对称关系求曲线上两点间的最小距离,体现了数形结合的解题思想方法,是中档题.解决解析几何中的最值问题一般有两种方法:一是几何意义,特别是用曲线的定义和平面几何的有关结论来解决,非常巧妙;二是将解析几何中最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法求解.5、A【解析】
根据题意,分析可得,由三角形面积公式计算可得△DEF和△ACF的面积,进而可得△ABC的面积,由几何概型公式计算可得答案.【详解】根据题意,为等边三角形,则,则,中,,其面积,中,,,其面积,则的面积,故在大等边三角形中随机取一点,则此点取自小等边三角形的概率,故选:A.【点睛】本题主要考查几何概型中的面积类型,基本方法是:分别求得构成事件A的区域面积和试验的全部结果所构成的区域面积,两者求比值,即为概率.6、B【解析】
设生产产品x百吨,生产产品百吨,利润为百万元,先分析题意,找出相关量之间的不等关系,即满足的约束条件,由约束条件画出可行域;要求应作怎样的组合投资,可使获利最大,即求可行域中的最优解,在线性规划的解答题中建议使用直线平移法求出最优解,即将目标函数看成是一条直线,分析目标函数与直线截距的关系,进而求出最优解.【详解】设生产产品百吨,生产产品百吨,利润为百万元则约束条件为:,作出不等式组所表示的平面区域:目标函数为.由解得.使目标函数为化为要使得最大,即需要直线在轴的截距最大即可.由图可知当直线过点时截距最大.此时应作生产产品3.25百吨,生产产品2.5百吨的组合投资,可使获利最大.
故选:B.【点睛】在解决线性规划的应用题时,其步骤为:①分析题目中相关量的关系,列出不等式组,即约束条件⇒②由约束条件画出可行域⇒③分析目标函数Z与直线截距之间的关系⇒④使用平移直线法求出最优解⇒⑤还原到现实问题中.属于中档题.7、C【解析】
根据斜二测画法还原在直角坐标系的图形,进而分析出的形状,可得结论.【详解】如图:根据斜二测画法可得:,故原是一个等边三角形故选【点睛】本题是一道判定三角形形状的题目,主要考查了平面图形的直观图,考查了数形结合的思想8、C【解析】
根据题意,利用余弦定理可得ab,再利用三角形面积计算公式即可得出答案.【详解】由c2=(a﹣b)2+6,可得c2=a2+b2﹣2ab+6,由余弦定理:c2=a2+b2﹣2abcosC=a2+b2﹣ab,所以:a2+b2﹣2ab+6=a2+b2﹣ab,所以ab=6;则S△ABCabsinC;故选:C.【点睛】本题考查余弦定理、三角形面积计算公式,关键是利用余弦定理求出ab的值.9、A【解析】由题意,焦点坐标,所以,解得,故选A。10、A【解析】
从图像易判断,再由图像判断出函数周期,根据,将代入即可求得【详解】根据正弦函数图像的性质可得,由,,又因为图像过,代入函数表达式可得,即,,解得故选:A【点睛】本题考查三角函数图像与性质的应用,函数图像的识别,属于中档题二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
利用三角函数的定义可求出的值.【详解】由三角函数的定义可得,故答案为.【点睛】本题考查利用三角函数的定义求余弦值,解题的关键就是三角函数定义的应用,考查计算能力,属于基础题.12、【解析】
∵,∴∴=1×[+]=1.故答案为:1.13、【解析】
利用二次不等式解集与二次方程根的关系,由二次不等式的解集得到二次方程的根,再利用根与系数的关系,得到和的值,得到答案.【详解】因为关于的不等式的解集是,所以关于的方程的解是,由根与系数的关系得,解得,所以.【点睛】本题考查二次不等式解集和二次方程根之间的关系,属于简单题.14、②③④【解析】
首先化简函数解析式,逐一分析选项,得到答案.【详解】①当时,函数的周期为,,或,所以①不正确;②时,,所以是增函数,②正确;③函数还可以化简为,所以与关于轴对称,正确;④,当时,,,④正确故选②③④【点睛】本题考查了三角函数的化简和三角函数的性质,属于中档题型.15、117【解析】
由成等比数列求出公差,由前项公式求和.【详解】设数列是公差为,则,由成等比数列得,解得,∴.故答案为:117.【点睛】本题考查等差数列的前项和公式,考查等比数列的性质.解题关键是求出数列的公差.16、1【解析】原式=sin2α(1-sin2β)+sin2β+cos2αcos2β=sin2αcos2β+cos2αcos2β+sin2β=cos2β(sin2α+cos2α)+sin2β=1.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)见解析.【解析】试题分析:(1)由等比数列通项公式解得,即可求解;(2)利用等差中项证明Sn+1,Sn,Sn+2成等差数列.试题解析:(1)设的公比为.由题设可得,解得,.故的通项公式为.(2)由(1)可得.由于,故,,成等差数列.点睛:等差、等比数列的性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质的前提条件,有时需要进行适当变形.在解决等差、等比数列的运算问题时,经常采用“巧用性质、整体考虑、减少运算量”的方法.18、(1);(2)5.【解析】
(1)根据正弦定理得,化简即得C的值;(2)先利用余弦定理求出a的值,再求的面积.【详解】(1)因为,根据正弦定理得,又,从而,由于,所以.(2)根据余弦定理,而,,,代入整理得,解得或(舍去).故的面积为.【点睛】本题主要考查正弦余弦定理解三角形,考查三角形面积的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.19、(1)证明见解析(2).(3)存在,PN.【解析】
(1)只需证明AB⊥面PMC,即可证明AB⊥PC;(2)由PM⊥面ABCD得∠PDM为PD与平面ABCD所成角,解△PDM即可求得PD与平面ABCD所成角的正弦值.(3)设DB∩MC=E,连接NE,可得PB∥NE,.即可.【详解】(1)证明:∵△PAB是边长为2的等边三角形,点M为AB的中点,∴PM⊥AB.∵ABCD为菱形,∠ABC=60°.∴CM⊥AB,且PM∩MC=M,∴AB⊥面PMC,∵PC⊂面PMC,∴AB⊥PC;(2)∵平面PAB⊥平面ABCD,平面PAB∩平面ABCD=AB,PM⊥AB.∴PM⊥面ABCD,∴∠PDM为PD与平面ABCD所成角.PM,MD,PDsin∠PMD,即PD与平面ABCD所成角的正弦值为.(3)设DB∩MC=E,连接NE,则有面PBD∩面MNC=NE,∵PB∥平面MNC,∴PB∥NE.∴.线段PD上存在点N,使得PB∥平面MNC,且PN.【点睛】本题考查了面面垂直的性质定理、线面垂直的判定定理、线面角,利用线面平行的性质定理确定点N的位置是关键,属于中档题..20、(1)详见解析(2)详见解析【解析】
(1)利用中位线定理可得∥,从而得证;(2)先证明,从而有平面,进而可得平面平面.【详解】(1)因为分别是的中点,所以∥.因为平面,平面,所以∥平面.(2)在直三棱柱中,平面,因为平面,所以.因为,且是的中点,所以.因为,平面,所以平面.因为平面,所以平面平面.【点睛】垂直、平行关系证明中应用转化与化归思想的常见类型.(1)证明线面、面面平行,需转化为证明线线平行.(2)证明线面垂直,需转化为证明线线垂直.(3)证明线线垂直,需转化为证明线面垂
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 附件:1.1521项拟继续有效行业标准复审结论-表(征求意见稿)
- 石河子大学《药物波谱解析》2022-2023学年第一学期期末试卷
- 石河子大学《食品包装学》2022-2023学年第一学期期末试卷
- 石河子大学《计算机网络基础》2022-2023学年期末试卷
- 沈阳理工大学《弱信号检测技术》2021-2022学年第一学期期末试卷
- 沈阳理工大学《建筑节能》2023-2024学年第一学期期末试卷
- 沈阳理工大学《过程控制系统与仪表》2021-2022学年期末试卷
- 沈阳理工大学《电镀工艺》2022-2023学年期末试卷
- 沈阳理工大学《环境工程概论》2023-2024学年第一学期期末试卷
- 合同产值申报
- 建筑工程项目管理咨询招标(范本)
- 三位数除两位数的除法练习题
- 慢性胃炎的中医治疗培训课件
- Python程序设计课件第7章面向对象程序设计
- 最新爆破安全规程
- 主题班会课防盗
- 幼儿园课件《挠挠小怪物》
- 教师教案检查八大评分标准教案的评分标准
- 政府会计基础知识讲义
- 幼儿园整合式主题活动设计案例《温馨家园》
- 荒漠区生态治理(麦草沙障、植物固沙)施工方案
评论
0/150
提交评论