成都市新都一中2025届高一数学第二学期期末质量检测试题含解析_第1页
成都市新都一中2025届高一数学第二学期期末质量检测试题含解析_第2页
成都市新都一中2025届高一数学第二学期期末质量检测试题含解析_第3页
成都市新都一中2025届高一数学第二学期期末质量检测试题含解析_第4页
成都市新都一中2025届高一数学第二学期期末质量检测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

成都市新都一中2025届高一数学第二学期期末质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如下图是一个正方体的平面展开图,在这个正方体中①②与成角③与为异面直线④以上四个命题中,正确的序号是()A.①②③ B.②④ C.③④ D.②③④2.已知实数x,y满足约束条件y≤1x≤2x+2y-2≥0,则A.1 B.2 C.3 D.43.在中,角所对的边分别为,若.且,则的值为()A. B.C. D.或4.要从已编号(1~50)的50枚最新研制的某型导弹中随机抽取5枚来进行发射试验,用每部分选取的号码间隔一样的系统抽样方法确定所选取的5枚导弹的编号可能是()A.5,10,15,20,25 B.3,13,23,33,43C.1,2,3,4,5 D.2,4,8,16,325.某小组由名男生、名女生组成,现从中选出名分别担任正、副组长,则正、副组长均由男生担任的概率为()A. B. C. D.6.已知过点的直线的倾斜角为,则直线的方程为()A. B. C. D.7.设在中,角所对的边分别为,若,则的形状为()A.锐角三角形 B.直角三角形 C.钝角三角形 D.不确定8.已知点,直线方程为,且直线与线段相交,求直线的斜率k的取值范围为()A.或 B.或C. D.9.已知一扇形的周长为,圆心角为,则该扇形的面积为()A. B. C. D.10.设的内角所对的边分别为,且,已知的面积等于,,则的值为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若等比数列满足,且公比,则_____.12.已知圆锥的底面半径为3,体积是,则圆锥侧面积等于___________.13.用数学归纳法证明“”,在验证成立时,等号左边的式子是______.14.在等差数列中,若,则__________.15.已知函数的最小正周期为,若将该函数的图像向左平移个单位后,所得图像关于原点对称,则的最小值为________.16.设常数,函数,若的反函数的图像经过点,则_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在中,角所对的边分别为,已知,.(1)求的值;(2)若,求周长的取值范围.18.某百货公司1~6月份的销售量与利润的统计数据如下表:月份123456销售量x(万件)1011131286利润y(万元)222529261612附:(1)根据2~5月份的统计数据,求出关于的回归直线方程(2)若由回归直线方程得到的估计数据与剩下的检验数据的误差均不超过万元,则认为得到的回归直线方程是理想的,试问所得回归直线方程是否理想?(参考公式:,)19.设锐角三角形ABC的内角A,B,C的对边分别为a,b,c,(Ⅰ)求B的大小;(Ⅱ)若,求的取值范围.20.已知数列满足关系式,.(1)用表示,,;(2)根据上面的结果猜想用和表示的表达式,并用数学归纳法证之.21.如图,已知以点为圆心的圆与直线相切.过点的动直线与圆A相交于M,N两点,Q是的中点,直线与相交于点P.(1)求圆A的方程;(2)当时,求直线的方程.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】由已知中正方体的平面展开图,得到正方体的直观图如上图所示:

由正方体的几何特征可得:①不平行,不正确;

②AN∥BM,所以,CN与BM所成的角就是∠ANC=60°角,正确;③与不平行、不相交,故异面直线与为异面直线,正确;

④易证,故,正确;故选D.2、C【解析】

作出可行域,作直线l:x+y=0,平移直线l可得最优解.【详解】作出可行域,如图ΔABC内部(含边界),作直线l:x+y=0,平移直线l,当直线l过点C(2,1)时,x+y=2+1=3为最大值.故选C.【点睛】本题考查简单的线性规划,解题关键是作出可行域.3、D【解析】

首先根据余弦定理,得到或.再分别计算即可.【详解】因为,所以,即:,解得:或.当时,.当时,.所以或.故选:D【点睛】本题主要考查余弦定理解三角形,熟记公式为解题的关键,属于中档题.4、B【解析】

对导弹进行平均分组,根据系统抽样的基本原则可得结果.【详解】将50枚导弹平均分为5组,可知每组50÷5=10枚导弹即分组为:1∼10,11∼20,21∼30,31∼40,41∼50按照系统抽样原则可知每组抽取1枚,且编号成公差为10的等差数列由此可确定B正确本题正确选项:B【点睛】本题考查抽样方法中的系统抽样,属于基础题.5、B【解析】

根据古典概型的概率计算公式,先求出基本事件总数,正、副组长均由男生担任包含的基本事件总数,由此能求出正、副组长均由男生担任的概率.【详解】某小组由2名男生、2名女生组成,现从中选出2名分别担任正、副组长,基本事件总数,正、副组长均由男生担任包含的基本事件总数,正、副组长均由男生担任的概率为.故选.【点睛】本题主要考查古典概型的概率求法。6、B【解析】

由直线的倾斜角求得直线的斜率,再由直线的点斜式方程求解.【详解】∵直线的倾斜角为,∵直线的斜率,又直线过点,由直线方程的点斜式可得直线的方程为,即.故选:B.【点睛】本题考查直线的点斜式方程,考查直线的倾斜角与斜率的关系,是基础题.7、B【解析】

利用正弦定理可得,结合三角形内角和定理与诱导公式可得,从而可得结果.【详解】因为,所以由正弦定理可得,,所以,所以是直角三角形.【点睛】本题主要考查正弦定理的应用,属于基础题.弦定理是解三角形的有力工具,其常见用法有以下几种:(1)知道两边和一边的对角,求另一边的对角(一定要注意讨论钝角与锐角);(2)知道两角与一个角的对边,求另一个角的对边;(3)证明化简过程中边角互化;(4)求三角形外接圆半径.8、A【解析】

先求出线段的方程,得出,在直线的方程中得到,将代入的表达式,利用不等式的性质求出的取值范围.【详解】易求得线段的方程为,得,由直线的方程得,当时,,此时,;当时,,此时,.因此,实数的取值范围是或,故选A.【点睛】本题考查斜率取值范围的计算,可以利用数形结合思想,观察倾斜角的变化得出斜率的取值范围,也可以利用参变量分离,得出斜率的表达式,利用不等式的性质得出斜率的取值范围,考查计算能力,属于中等题.9、C【解析】

根据题意设出扇形的弧长与半径,通过扇形的周长与弧长公式即可求出扇形的弧长与半径,进而根据扇形的面积公式即可求解.【详解】设扇形的弧长为,半径为,扇形的圆心角的弧度数是.

则由题意可得:.

可得:,解得:,.可得:故选:C【点睛】本题主要考查扇形的周长与扇形的面积公式的应用,以及考查学生的计算能力,属于基础题.10、D【解析】

由正弦定理化简已知,结合,可求,利用同角三角函数基本关系式可求,进而利用三角形的面积公式即可解得的值.【详解】解:,由正弦定理可得,,,即,,解得:或(舍去),的面积,解得.故选:.【点睛】本题主要考查了正弦定理,同角三角函数基本关系式,三角形的面积公式在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、.【解析】

利用等比数列的通项公式及其性质即可得出.【详解】,故答案为:1.【点睛】本题考查了等比数列的通项公式及其性质,考查了推理能力与计算能力,属于容易题.12、【解析】试题分析:求圆锥侧面积必须先求圆锥母线,既然已知体积,那么可先求出圆锥的高,再利用圆锥的性质(圆锥的高,底面半径,母线组成直角三角形)可得母线,,,,.考点:圆锥的体积与面积公式,圆锥的性质.13、【解析】

根据左边的式子是从开始,结束,且指数依次增加1求解即可.【详解】因为左边的式子是从开始,结束,且指数依次增加1所以,左边的式子为,故答案为.【点睛】项数的变化规律,是利用数学归纳法解答问题的基础,也是易错点,要使问题顺利得到解决,关键是注意两点:一是首尾两项的变化规律;二是相邻两项之间的变化规律.14、【解析】

利用等差数列广义通项公式,将转化为,从而求出的值,再由广义通项公式求得.【详解】在等差数列中,由,,得,即..故答案为:1.【点睛】本题考查等差数列广义通项公式的运用,考查基本量法求解数列问题,属于基础题.15、【解析】

先利用周期公式求出,再利用平移法则得到新的函数表达式,依据函数为奇函数,求出的表达式,即可求出的最小值.【详解】由得,所以,向左平移个单位后,得到,因为其图像关于原点对称,所以函数为奇函数,有,则,故的最小值为.【点睛】本题主要考查三角函数的性质以及图像变换,以及型的函数奇偶性判断条件.一般地为奇函数,则;为偶函数,则;为奇函数,则;为偶函数,则.16、1【解析】

反函数图象过(2,1),等价于原函数的图象过(1,2),代点即可求得.【详解】依题意知:f(x)=lg(x+a)的图象过(1,2),∴lg(1+a)=2,解得a=1.故答案为:1【点睛】本题考查了反函数,熟记其性质是关键,属基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)3;(2).【解析】

(1)先用二倍角公式化简,再根据正弦定理即可解出;(2)用正弦定理分别表示,再用三角形内角和及和差公式化简,转化为三角函数求最值.【详解】(1)由及二倍角公式得,又即,所以;(2)由正弦定理得,周长:,又因为,所以.因此周长的取值范围是.【点睛】本题考查了正余弦定理解三角形,三角形求边长取值范围常用的方法:1、转化为三角函数求最值;2、基本不等式.18、(1);(2)见解析.【解析】

(1)求出,由公式,得的值,从而求出的值,从而得到关于的线性回归方程;(2)将月份和月份的销售量值代入回归直线方程,求出预测值,并计算预测值与实际值之间的误差,结合题意来判断(1)中所得回归直线方程是否理想。【详解】(1)计算得,,,则,;故关于的回归直线方程为.(2)当时,,此时;当时,,此时.故所得的回归直线方程是理想的.【点睛】本题考查回归直线方程的应用,解题的关键就是弄清楚最小二乘法公式,并准确代入数据计算,着重考察计算能力,属于中等题。19、(1)(2)【解析】

(Ⅰ)由条件利用正弦定理求得sinB的值,可得B的值(Ⅱ)使用正弦定理用sinA,sinC表示出a,c,得出a+c关于A的三角函数,根据A的范围和正弦函数的性质得出a+c的最值.【详解】解(Ⅰ)锐角又,,由正弦定理得,∴.

∴的取值范围为【点睛】本题主要考查正弦定理,余弦定理的应用,基本不等式的应用,属于基础题.20、(1),,(2)猜想:,证明见解析【解析】

(1)根据递推关系依次代入求解,(2)根据规律猜想,再利用数学归纳法证明【详解】解:(1),∴,,;(2)猜想:.证明:当时,结论显然成立;假设时结论成立,即,则时,,即时结论成立.综上,对时结论成立.【点睛】本题考查归纳猜想与数学归纳法证明,考查基本分析论证能力,属基础题21、(1).(2)或【解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论