2025届福建省龙岩市非一级达标校数学高一下期末考试试题含解析_第1页
2025届福建省龙岩市非一级达标校数学高一下期末考试试题含解析_第2页
2025届福建省龙岩市非一级达标校数学高一下期末考试试题含解析_第3页
2025届福建省龙岩市非一级达标校数学高一下期末考试试题含解析_第4页
2025届福建省龙岩市非一级达标校数学高一下期末考试试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届福建省龙岩市非一级达标校数学高一下期末考试试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.为了研究某大型超市开业天数与销售额的情况,随机抽取了5天,其开业天数与每天的销售额的情况如表所示:开业天数1020304050销售额/天(万元)62758189根据上表提供的数据,求得关于的线性回归方程为,由于表中有一个数据模糊看不清,请你推断出该数据的值为()A.68 B.68.3 C.71 D.71.32.不等式的解集为()A. B. C. D.3.某人打靶时连续射击两次,事件“至少有一次中靶”的互斥事件是()A.至多有一次中靶B.只有一次中靶C.两次都中靶D.两次都不中靶4.设是同一个半径为4的球的球面上四点,为等边三角形且其面积为,则三棱锥体积的最大值为A. B. C. D.5.函数的零点有两个,求实数的取值范围()A. B.或 C.或 D.6.在中,,则的形状为()A.直角三角形 B.等腰三角形 C.钝角三角形 D.正三角形7.点关于直线的对称点的坐标为()A. B. C. D.8.若向量,且,则等于()A. B. C. D.9.的内角的对边分别为,面积为,若,则外接圆的半径为()A. B. C. D.10.已知等差数列{an}的前n项和为,满足S5=S9,且a1>0,则Sn中最大的是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.设数列是等差数列,,,则此数列前20项和等于______.12.明代程大位《算法统宗》卷10中有题:“远望巍巍塔七层,红灯点点倍加增,共灯三百八十一,请问尖头几盏灯?”则尖头共有__________盏灯.13.设等差数列,的前项和分别为,,若,则__________.14.已知等差数列中,,,则该等差数列的公差的值是______.15.不等式有解,则实数的取值范围是______.16.等比数列中,若,,则______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知数列和中,数列的前n项和为,若点在函数的图象上,点在函数的图象上.设数列.(1)求数列的通项公式;(2)求数列的前项和;(3)求数列的最大值.18.如图,在四棱锥中,,,,,,,分别为棱,的中点.(1)证明:平面.(2)证明:平面平面.19.如图,在四棱锥中,底面为梯形,,平面平面是的中点.(1)求证:平面;(2)若,证明:20.已知在三棱锥S-ABC中,∠ACB=,又SA⊥平面ABC,AD⊥SC于D,求证:AD⊥平面SBC.21.设,,.(1)若,求实数的值;(2)若,求实数的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

根据表中数据计算,再代入线性回归方程求得,进而根据平均数的定义求出所求的数据.【详解】根据表中数据,可得,代入线性回归方程中,求得,则表中模糊不清的数据是,故选:B.【点睛】本题考查了线性回归方程过样本中心点的应用问题,是基础题.2、B【解析】

可将分式不等式转化为一元二次不等式,注意分母不为零.【详解】原不等式可化为,其解集为,故选B.【点睛】一般地,等价于,而则等价于,注意分式不等式转化为整式不等式时分母不为零.3、D【解析】

根据互斥事件的定义逐个分析即可.【详解】“至少有一次中靶”与“至多有一次中靶”均包含中靶一次的情况.故A错误.“至少有一次中靶”与“只有一次中靶”均包含中靶一次的情况.故B错误.“至少有一次中靶”与“两次都中靶”均包含中靶两次的情况.故C错误.根据互斥事件的定义可得,事件“至少有一次中靶”的互斥事件是“两次都不中靶”.故选:D【点睛】本题主要考查了互斥事件的辨析,属于基础题型.4、B【解析】

分析:作图,D为MO与球的交点,点M为三角形ABC的中心,判断出当平面时,三棱锥体积最大,然后进行计算可得.详解:如图所示,点M为三角形ABC的中心,E为AC中点,当平面时,三棱锥体积最大此时,,点M为三角形ABC的中心中,有故选B.点睛:本题主要考查三棱锥的外接球,考查了勾股定理,三角形的面积公式和三棱锥的体积公式,判断出当平面时,三棱锥体积最大很关键,由M为三角形ABC的重心,计算得到,再由勾股定理得到OM,进而得到结果,属于较难题型.5、B【解析】

由题意可得,的图象(红色部分)和直线有2个交点,数形结合求得的范围.【详解】由题意可得的图象(红色部分)和直线有2个交点,如图所示:故有或,故选:B.【点睛】已知函数零点(方程根)的个数,求参数取值范围的三种常用的方法:(1)直接法,直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法,先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法,先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.一是转化为两个函数的图象的交点个数问题,画出两个函数的图象,其交点的个数就是函数零点的个数,二是转化为的图象的交点个数问题.6、A【解析】

在中,由,变形为,再利用内角和转化为,通过两角和的正弦展开判断.【详解】在中,因为,所以,所以,所以,所以,所以直角三角形.故选:A【点睛】本题主要考查了利用三角恒等变换判断三角形的形状,还考查了运算求解的能力,属于基础题.7、D【解析】令,设对称点的坐标为,可得的中点在直线上,故可得①,又可得的斜率,由垂直关系可得②,联立①②解得,即对称点的坐标为,故选D.点睛:本题考查对称问题,得出中点在直线且连线与已知直线垂直是解决问题的关键,属中档题;点关于直线成轴对称问题,由轴对称定义知,对称轴即为两对称点连线的“垂直平分线”,利用“垂直”即斜率关系,“平分”即中点在直线上这两个条件建立方程组,就可求出对称点的坐标.8、B【解析】

根据坐标形式下向量的平行对应的等量关系,即可计算出的值,再根据坐标形式下向量的加法即可求解出的坐标表示.【详解】因为且,所以,所以,所以.故选:B.【点睛】本题考查根据坐标形式下向量的平行求解参数以及向量加法的坐标运算,难度较易.已知,若则有.9、A【解析】

出现面积,可转化为观察,和余弦定理很相似,但是有差别,差别就是条件是形式,而余弦定理中是形式,但是我们可以注意到:,所以可以完成本题.【详解】由,所以在三角形中,再由正弦定理所以答案选择A.【点睛】本题很灵活,在常数4的处理问题上有点巧妙,然后再借助余弦定理及正弦定理,难度较大.10、B【解析】

由S5=S9可得a7+a8=0,再结合首项即可判断Sn最大值【详解】依题意,由S5=S9,a1>0,所以数列{an}为递减数列,且S9-S5=a6+a7+a8+a9=2(a7+a8)=0,即a7+a8=0,所以a7>0,a8<0,所以则Sn中最大的是S7,故选:B.【点睛】本题考查等差数列Sn最值的判断,属于基础题二、填空题:本大题共6小题,每小题5分,共30分。11、180【解析】

根据条件解得公差与首项,再代入等差数列求和公式得结果【详解】因为,,所以,【点睛】本题考查等差数列通项公式以及求和公式,考查基本分析求解能力,属基础题12、1【解析】

依题意,这是一个等比数列,公比为2,前7项和为181,由此能求出结果.【详解】依题意,这是一个等比数列,公比为2,前7项和为181,∴181,解得a1=1.故答案为:1.【点睛】本题考查等比数列的首项的求法,考查等比数列的前n项和公式,是基础题.13、【解析】分析:首先根据等差数列的性质得到,利用分数的性质,将项的比值转化为和的比值,从而求得结果.详解:根据题意有,所以答案是.点睛:该题考查的是有关等差数列的性质的问题,将两个等差数列的项的比值可以转化为其和的比值,结论为,从而求得结果.14、【解析】

根据等差数列的通项公式即可求解【详解】故答案为:【点睛】本题考查等差通项基本量的求解,属于基础题15、【解析】

由参变量分离法可得知,由二倍角的余弦公式以及二次函数的基本性质求出函数的最小值,即可得出实数的取值范围.【详解】不等式有解,等价于存在实数,使得关于的不等式成立,故只需.令,,由二次函数的基本性质可知,当时,该函数取得最小值,即,.因此,实数的取值范围是.故答案为:.【点睛】本题考查不等式有解的问题,涉及二倍角余弦公式以及二次函数基本性质的应用,一般转化为函数的最值来求解,考查计算能力,属于中等题.16、【解析】

设的首项为,公比为,根据,列出方程组,求出和即可得解.【详解】设的首项为,公比为,则:,解之得,所以:.故答案为:.【点睛】本题考查等比数列中某项的求法,解题关键是根据题意列出方程组,需要注意的是为了简化运算不用直接求解,解出即可,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)(3)【解析】

(1)先根据题设知,再利用求得,验证符合,最后答案可得.

(2)由题设可知,把代入,然后用错位相减法求和;(3)计算,判断其大于零时的范围,可得数列取最大值时的项数,进而可得最大值..【详解】解:(1)由已知得:,∵当时,,又当时,符合上式.(2)由已知得:①②②-①可得:(3)令,得:,又且,即为最大,故最大值为.【点睛】本题主要考查了数列的递推式解决数列的通项公式和求和问题,考查数列最大项的求解,是中档题.18、(1)见解析(2)见解析【解析】

(1)由勾股定理得,已知,故得证;(2)由题,E为AB中点,,故ABCD为平行四边形,,由F为PB中点,EF为三角形APB的中位线,故,AP和AD相交于A,EF和CE相交于E,故得证.【详解】证明:(1)因为,,,所以,由所以.因为,,所以平面.(2)因为为棱的中点,所以,因为,所以.因为,所以,所以四边形为平行四边形,所以,所以平面.因为,分别为棱,的中点,所以,所以平面.因为,平面,平面,所以平面平面.【点睛】本题考查直线和平面垂直的判定,平面和平面平行的判断,比较基础.19、(1)证明见解析,(2)证明见解析【解析】

(1)首先取的中点,连接,.根据已知条件和三角形中位线定理得到,又因为四边形为平行四边形,所以,再利用线面平行的判定即可证明.(2)首先连接,利用线面垂直的判定证明平面,再根据线面垂直的性质即可证明.【详解】(1)取的中点,连接,.因为分别为,的中点,所以.又因为,所以.所以四边形为平行四边形,.又因为平面,所以平面.(2)连接,因为,是的中点,所以.因为平面平面,,所以平面.又因为平面,所以.平面.平面,所以.【点睛】本题第一问考查线面平行的证明,第二问考查利用线面垂直的性质证明线线垂直,属于中档题.20、证明见解析【解析】

先由SA⊥面ABC,得BC⊥SA,又BC⊥AC,得BC⊥面SAC,故BC⊥AD,又SC⊥AD,所以AD⊥面SBC.【详解】证明:因为SA⊥面ABC,BC面ABC,所以BC⊥SA;又由∠ACB

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论