版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北京市陈经纶学校2025届数学高一下期末考试试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.向量,,若,则()A.2 B. C. D.2.已知数列共有项,满足,且对任意、,有仍是该数列的某一项,现给出下列个命题:(1);(2);(3)数列是等差数列;(4)集合中共有个元素.则其中真命题的个数是()A. B. C. D.3.一个圆柱的轴截面是正方形,其侧面积与一个球的表面积相等,那么这个圆柱的体积与这个球的体积之比为()A.1:3 B.3:1 C.2:3 D.3:24.在等比数列中,则()A.81 B. C. D.2435.已知为的三个内角的对边,,的面积为2,则的最小值为().A. B. C. D.6.一枚骰子连续投两次,则两次向上点数均为1的概率是()A. B. C. D.7.若,则下列不等式中不正确的是()A. B. C. D.8.已知如图正方体中,为棱上异于其中点的动点,为棱的中点,设直线为平面与平面的交线,以下关系中正确的是()A. B.C.平面 D.平面9.已知角的终边经过点,则()A. B. C. D.10.在中,角,,所对的边分别为,,,若,,,则的值为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知等差数列的公差为2,若成等比数列,则________.12.在等比数列中,,,则______________.13.函数的定义域为________14.在直角坐标系中,已知任意角以坐标原点为顶点,以轴的非负半轴为始边,若其终边经过点,且,定义:,称“”为“的正余弦函数”,若,则_________.15.将边长为2的正沿边上的高折成直二面角,则三棱锥的外接球的表面积为.16.若,则的值为_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设全集是实数集,集合,.(1)若,求实数的取值范围;(2)若,求.18.在中,成等差数列,分别为的对边,并且,,求.19.在平面直角坐标系中,已知向量,,.(1)若,求的值;(2)若与的夹角为,求的值.20.已知直线:,一个圆的圆心在轴上且该圆与轴相切,该圆经过点.(1)求圆的方程;(2)求直线被圆截得的弦长.21.已知,,,均为锐角,且.(1)求的值;(2)若,求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】试题分析:,,得得,故选C.考点:向量的垂直运算,向量的坐标运算.2、D【解析】
对任意的、,有仍是该数列的某一项,可得出是该数列中的项,由于,可得,即,以此类推即可判断出结论.【详解】对任意、,有仍是该数列的某一项,,当时,则,必有,即,而或.若,则,而、、,舍去;若,此时,,同理可得.可得数列为:、、、、.综上可得:(1);(2);(3)数列是等差数列;(4)集合,该集合中共有个元素.因此,(1)(2)(3)(4)都正确.故选:D.【点睛】本题考查有关数列命题真假的判断,涉及数列的新定义,考查推理能力与分类讨论思想的应用,属于中等题.3、D【解析】
设圆柱的底面半径为,利用圆柱侧面积公式与球的表面积公式建立关系式,算出球的半径,再利用圆柱与球的体积公式加以计算,可得所求体积之比.【详解】设圆柱的底面半径为,轴截面正方形边长,则,可得圆柱的侧面积,再设与圆柱表面积相等的球半径为,则球的表面积,解得,因此圆柱的体积为,球的体积为,因此圆柱的体积与球的体积之比为.故选:D.【点睛】本题主要考查了圆柱的侧面积和体积公式,以及球的表面积和体积公式的应用,其中解答中熟记公式,合理计算半径之间的关系是解答的关键,着重考查了推理与运算能力,属于基础题.4、A【解析】解:因为等比数列中,则,选A5、D【解析】
运用三角形面积公式和余弦定理,结合三角函数的辅助角公式和正弦型函数的值域最后可求出的最小值.【详解】因为,所以,即,令,可得,于是有,因此,即,所以的最小值为,故本题选D.【点睛】本题考查了余弦定理、三角形面积公式,考查了辅助角公式,考查了数学运算能力.6、D【解析】
连续投两次骰子共有36种,求出满足情况的个数,即可求解.【详解】一枚骰子投一次,向上的点数有6种,则连续投两次骰子共有36种,两次向上点数均为1的有1种情况,概率为.故选:D.【点睛】本题考查古典概型的概率,属于基础题.7、C【解析】
,可得,则根据不等式的性质逐一分析选项,A:,,所以成立;B:,则,根据基本不等式以及等号成立的条件则可判断;C:且,根据可乘性可知结果;D:,根据乘方性可判断结果.【详解】A:由题意,不等式,可得,则,,所以成立,所以A是正确的;B:由,则,所以,因为,所以等号不成立,所以成立,所以B是正确的;C:由且,根据不等式的性质,可得,所以C不正确;D:由,可得,所以D是正确的,故选:C.【点睛】本题考查不等式的性质,不等式等号成立的条件,熟记不等式的性质是解题的关键,属于基础题.8、C【解析】
根据正方体性质,以及线面平行、垂直的判定以及性质定理即可判断.【详解】因为在正方体中,,且平面,平面,所以平面,因为平面,且平面平面,所以有,而,则与不平行,故选项不正确;若,则,显然与不垂直,矛盾,故选项不正确;若平面,则平面,显然与正方体的性质矛盾,故不正确;而因为平面,平面,所以有平面,所以选项C正确,.【点睛】本题考查了线线、线面平行与垂直的关系判断,属于中档题.9、C【解析】
首先根据题意求出,再根据正弦函数的定义即可求出的值.【详解】,.故选:C【点睛】本题主要考查正弦函数的定义,属于简单题.10、B【解析】
先利用面积公式得到,再利用余弦定理得到【详解】余弦定理:故选B【点睛】本题考查了面积公式和余弦定理,意在考查学生的计算能力.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
利用等差数列{an}的公差为1,a1,a3,a4成等比数列,求出a1,即可求出a1.【详解】∵等差数列{an}的公差为1,a1,a3,a4成等比数列,
∴(a1+4)1=a1(a1+2),
∴a1=-8,
∴a1=-2.
故答案为-2..【点睛】本题考查等比数列的性质,考查等差数列的通项,考查学生的计算能力,属基础题..12、1【解析】
根据已知两项求出数列的公比,然后根据等比数列的通项公式进行求解即可.【详解】∵a1=1,a5=4∴公比∴∴该等比数列的通项公式a3=11=1故答案为:1.【点睛】本题主要考查了等比数列的通项公式,一般利用基本量的思想,属于基础题.13、【解析】
根据反余弦函数的定义,可得函数满足,即可求解.【详解】由题意,根据反余弦函数的定义,可得函数满足,解得,即函数的定义域为.故答案为:【点睛】本题主要考查了反余弦函数的定义的应用,其中解答中熟记反余弦函数的定义,列出不等式求解是解答的关键,着重考查了推理与运算能力,属于基础题.14、【解析】试题分析:根据正余弦函数的定义,令,则可以得出,即.可以得出,解得,.那么,,所以故本题正确答案为.考点:三角函数的概念.15、【解析】
解:根据题意可知三棱锥B﹣ACD的三条侧棱BD、DC、DA两两互相垂直,所以它的外接球就是它扩展为长方体的外接球,∵长方体的对角线的长为:,∴球的直径是,半径为,∴三棱锥B﹣ACD的外接球的表面积为:4π5π.故答案为5π考点:外接球.16、【解析】
把已知等式展开利用二倍角余弦公式及两角和的余弦公式,整理后两边平方求解.【详解】解:由,得,,则,两边平方得:,即.故答案为.【点睛】本题考查三角函数的化简求值,考查倍角公式的应用,是基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)或(2)当时,;当时,【解析】
(1)若,则或,解得实数的取值范围;(2)若则,结合交集定义,分类讨论可得.【详解】解:(1)若,则或,即或.所以的取值范围为或.(2)∵,则且,∴.当时,;当时,.【点睛】本题考查集合的交集运算,元素与元素的关系,分类讨论思想,属于中档题.18、或.【解析】
先算出,从而得到,也就是,结合面积得到,再根据余弦定理可得,故可解得的大小.【详解】∵成等差数列,∴,又,∴,∴.所以,所以,①又,∴.②由①②,得,,而由余弦定理可知∴即.③联立③与②解得或,综上,或.【点睛】三角形中共有七个几何量(三边三角以及外接圆的半径),一般地,知道其中的三个量(除三个角外),可以求得其余的四个量.(1)如果知道三边或两边及其夹角,用余弦定理;(2)如果知道两边即一边所对的角,用正弦定理(也可以用余弦定理求第三条边);(3)如果知道两角及一边,用正弦定理.19、(1)1(2)【解析】
(1).若,则,结合三角函数的关系式即可求的值;
(2).若与的夹角为,利用向量的数量积的坐标公式进行求解即可求的值.【详解】(1)由,则即,所以所以(2),又与的夹角为,则即即由,则所以,即【点睛】本题主要考查向量数量积的定义和坐标公式的应用,考查学生的计算能力,属于基础题.20、(1);(2).【解析】
(1)由题意设圆心,半径,将点代入圆C的方程可求得a,可得圆的方程;(2)求出圆心C到直线l的距离d,利用勾股定理求出l被圆C所截得弦长.【详解】(1)∵圆心在轴上且该圆与轴相切,∴设圆心,半径,,设圆的方程为,将点代入得,∴,∴所求圆的方程为.(2)∵圆心到直线:的距离
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 浅论多媒体在计算机教学中的应用
- 《新能源材料专业英语》教学大纲
- 礼仪课题文档
- 教案 均值不等式教案
- 玉溪师范学院《土地生态学》2023-2024学年第一学期期末试卷
- 名著经典语录摘要
- 婚姻家庭继承法教案
- 电影放映机账务处理实例-记账实操
- 房地产 -太平山文旅开发规划方案融合运营规划提案
- 2024年空气清新香片项目综合评估报告
- 感染性心内膜炎ppt课件
- 青春期人际交往
- 职工环保教育培训档案最新版本
- 2022年导管相关性血流感染(CRBSI)监测规范及操作手册
- 剪纸英文介绍paper cutting(课堂PPT)
- 研究生课件graphpad prism7作图教程
- 入行论32课(课堂PPT)
- RSlogix500编程PPT课件
- 培训讲义电子版yunsdr相关02提高部分ver
- 通江县房地产市场调研报告
- (完整word版)SOFA评分表
评论
0/150
提交评论