安徽省舒城龙河中学2025届高一数学第二学期期末教学质量检测试题含解析_第1页
安徽省舒城龙河中学2025届高一数学第二学期期末教学质量检测试题含解析_第2页
安徽省舒城龙河中学2025届高一数学第二学期期末教学质量检测试题含解析_第3页
安徽省舒城龙河中学2025届高一数学第二学期期末教学质量检测试题含解析_第4页
安徽省舒城龙河中学2025届高一数学第二学期期末教学质量检测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省舒城龙河中学2025届高一数学第二学期期末教学质量检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在△ABC中,角A,B,C的对边分别为a,b,c,若,,则在方向上的投影为()A.1 B.2 C.3 D.42.为数列的前n项和,若,则的值为()A.-7 B.-4 C.-2 D.03.设向量,,则向量与的夹角为()A. B. C. D.4.如图,中,分别是边的中点,与相交于点,则(

)A. B.C. D.5.下列说法正确的是()A.函数的最小值为 B.函数的最小值为C.函数的最小值为 D.函数的最小值为6.函数的图像与函数,的图像的交点个数为()A. B. C. D.7.在中,内角,,的对边分别为,,,若,,,则的最小角为()A. B. C. D.8.在正方体中,直线与平面所成角的正弦值为()A. B. C. D.9.已知两个正数a,b满足,则的最小值是(

)A.2 B.3 C.4 D.510.设的内角所对边分别为.则该三角形()A.无解 B.有一解 C.有两解 D.不能确定二、填空题:本大题共6小题,每小题5分,共30分。11.数列的前项和为,已知,且对任意正整数,都有,若恒成立,则实数的最小值为________.12.已知一组数据6,7,8,8,9,10,则该组数据的方差是____.13.执行如图所示的程序框图,则输出的结果为__________.14.已知点,点,则________.15.若等差数列和等比数列满足,,则_______.16.已知三个顶点的坐标分别为,若⊥,则的值是______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知向量.(1)若,且,求实数的值;(2)若,且与的夹角为,求实数的值.18.已知为等差数列,且(Ⅰ)求数列的通项公式;(Ⅱ)记的前项和为,若成等比数列,求正整数的值.19.已知函数.(1)求函数的最小正周期和单调递减区间;(2)求函数在上的最大值和最小值.20.设数列的前项和为,已知.(1)求,的值;(2)求证:数列是等比数列.21.在直角中,,延长至点D,使得,连接.(1)若,求的值;(2)求角D的最大值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

根据正弦定理,将已知条件进行转化化简,结合两角和差的正弦公式可求,根据在方向上的投影为,代入数值,即可求解.【详解】因为,所以,即,即,因为,所以,所以,所以在方向上的投影为:.故选:A.【点睛】本题主要考查正弦定理和平面向量投影的应用,根据正弦定理结合两角和差的正弦公式是解决本题的关键,属于中档题.2、A【解析】

依次求得的值,进而求得的值.【详解】当时,;当时,,;当时,;故.故选:A.【点睛】本小题主要考查根据递推关系式求数列每一项,属于基础题.3、C【解析】

由条件有,利用公式可求夹角.【详解】,.又又向量与的夹角的范围是向量与的夹角为.故选:C4、C【解析】

利用向量的加减法的法则,利用是的重心,进而得出,再利用向量的加减法的法则,即可得出答案.【详解】由题意,点分别是边的中点,与相交于点,所以是的重心,则,又因为,所以故答案为C【点睛】本题主要考查了向量的线性运算,以及三角形重心的性质,其中解答中熟记三角形重心的性质,以及向量的线性运算法则是解答的关键,着重考查了推理与运算能力,属于基础题.5、C【解析】

A.时无最小值;

B.令,由,可得,即,令,利用单调性研究其最值;

C.令,令,利用单调性研究其最值;

D.当时,,无最小值.【详解】解:A.时无最小值,故A错误;

B.令,由,可得,即,令,则其在上单调递减,故,故B错误;C.令,令,则其在上单调递减,上单调递增,故,故C正确;

D.当时,,无最小值,故D不正确.

故选:C.【点睛】本题考查了基本不等式的性质、利用导数研究函数的单调性极值与最值、三角函数的单调性,考查了推理能力与计算能力,属于中档题.6、A【解析】

在同一坐标系中画出两函数的图象,根据图象得到交点个数.【详解】可得两函数图象如下图所示:两函数共有个交点本题正确选项:【点睛】本题考查函数交点个数的求解,关键是能够根据两函数的解析式,通过平移和翻折变换等知识得到函数的图象,采用数形结合的方式得到结果.7、A【解析】

由三角形大边对大角可知所求角为角,利用余弦定理可求得,进而得到结果.【详解】的最小角为角,则故选:【点睛】本题考查利用余弦定理解三角形的问题,关键是明确三角形中大边对大角的特点,进而根据余弦定理求得所求角的余弦值.8、C【解析】

由题,连接,设其交平面于点易知平面,即(或其补角)为与平面所成的角,再利用等体积法求得AO的长度,即可求得的长度,可得结果.【详解】设正方体的边长为1,如图,连接,设其交平面于点,则易知,,又,所以平面,即得平面.在三棱锥中,由等体积法知,,即,解得,所以.连接,则(或其补角)为与平面所成的角.在中,.故选C.【点睛】本题考查了立体几何中线面角的求法,作出线面角是解题的关键,求高的长度会用到等体积法,属于中档题.9、D【解析】

根据题意,分析可得,对其变形可得,由基本不等式分析可得答案.【详解】解:根据题意,正数,满足,则;即的最小值是;故选:.【点睛】本题考查基本不等式的性质以及应用,关键是掌握基本不等式应用的条件.10、C【解析】

利用正弦定理以及大边对大角定理求出角,从而判断出该三角形解的个数.【详解】由正弦定理得,所以,,,,或,因此,该三角形有两解,故选C.【点睛】本题考查三角形解的个数的判断,解题时可以充分利用解的个数的等价条件来进行判断,具体来讲,在中,给定、、,该三角形解的个数判断如下:(1)为直角或钝角,,一解;,无解;(2)为锐角,或,一解;,两解;,无解.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】令,可得是首项为,公比为的等比数列,所以,,实数的最小值为,故答案为.12、.【解析】

由题意首先求得平均数,然后求解方差即可.【详解】由题意,该组数据的平均数为,所以该组数据的方差是.【点睛】本题主要考查方差的计算公式,属于基础题.13、1【解析】

由已知中的程序语句可知:该程序的功能是利用循环结构计算S的值并输出变量i的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【详解】模拟程序的运行,可得

S=1,i=1

满足条件S<40,执行循环体,S=3,i=2

满足条件S<40,执行循环体,S=7,i=3

满足条件S<40,执行循环体,S=15,i=4

满足条件S<40,执行循环体,S=31,i=5

满足条件S<40,执行循环体,S=13,i=1

此时,不满足条件S<40,退出循环,输出i的值为1.

故答案为:1.【点睛】本题主要考查的是程序框图,属于基础题.在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.14、【解析】

直接利用两点间的距离公式求解即可.【详解】点A(2,1),B(5,﹣1),则|AB|.故答案为:.【点睛】本题考查两点间的距离公式的应用,基本知识的考查.15、【解析】

设等差数列的公差为,等比数列的公比为,根据题中条件求出、的值,进而求出和的值,由此可得出的值.【详解】设等差数列的公差和等比数列的公比分别为和,则,求得,,那么,故答案为.【考点】等差数列和等比数列【点睛】等差、等比数列各有五个基本量,两组基本公式,而这两组公式可看作多元方程,利用这些方程可将等差、等比数列中的运算问题转化为解关于基本量的方程(组)问题,因此可以说数列中的绝大部分运算题可看作方程应用题,所以用方程思想解决数列问题是一种行之有效的方法.16、【解析】

求出,再利用,求得.【详解】,因为⊥,所以,解得:.【点睛】本题考查向量的坐标表示、数量积运算,要注意向量坐标与点坐标的区别.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】

(1)根据平面向量加法和数乘的坐标表示公式、数量积的坐标表示公式,结合两个互相垂直的平面向量数量积为零,进行求解即可;(2)利用平面向量夹角公式进行求解即可.【详解】(1)当时,.因为,所以;(2)当时,所以有,因为与的夹角为,所以有.【点睛】本题考查了平面向量运算的坐标表示公式,考查了平面向量夹角公式,考查了数学运算能力.18、:(Ⅰ)(Ⅱ)【解析】试题分析:(Ⅰ)设等差数列{an}的公差等于d,则由题意可得,解得a1=1,d=1,从而得到{an}的通项公式.(Ⅱ)由(Ⅰ)可得{an}的前n项和为Sn==n(n+1),再由=a1Sk+1,求得正整数k的值.解:(Ⅰ)设等差数列{an}的公差等于d,则由题意可得,解得a1=1,d=1.∴{an}的通项公式an=1+(n﹣1)1=1n.(Ⅱ)由(Ⅰ)可得{an}的前n项和为Sn==n(n+1).∵若a1,ak,Sk+1成等比数列,∴=a1Sk+1,∴4k1=1(k+1)(k+3),k="2"或k=﹣1(舍去),故k=2.考点:等比数列的性质;等差数列的通项公式.19、(1);(2)5;-2【解析】

(1)根据二倍角公式和辅助角公式化简即可(2)由求出的范围,再根据函数图像求最值即可【详解】(1),,令,即单减区间为;(2)由,当时,的最小值为:-2;当时,的最大值为:5【点睛】本题考查三角函数解析式的化简,函数基本性质的求解(周期、单调性、在给定区间的最值),属于中档题20、(1),(2)见解析【解析】

(1)依次令,,解出即可。(2)由知当时,两式相减,化简即可得证。【详解】解(1)∵,∴当时,;当时,,∴;当时,,∴.(2)证明:∵,①∴当时,,②①-②得,∴,即.∴.∵.∴,∴.即是以4为首项,2为公比的等比数列.【点睛】本题考查公式的应用,属于基础

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论