版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北京三中新高考数学四模试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.一个盒子里有4个分别标有号码为1,2,3,4的小球,每次取出一个,记下它的标号后再放回盒子中,共取3次,则取得小球标号最大值是4的取法有()A.17种 B.27种 C.37种 D.47种2.过抛物线的焦点的直线与抛物线交于、两点,且,抛物线的准线与轴交于,的面积为,则()A. B. C. D.3.已知的展开式中的常数项为8,则实数()A.2 B.-2 C.-3 D.34.已知平面和直线a,b,则下列命题正确的是()A.若∥,b∥,则∥ B.若,,则∥C.若∥,,则 D.若,b∥,则5.函数在上的图象大致为()A. B. C. D.6.已知点为双曲线的右焦点,直线与双曲线交于A,B两点,若,则的面积为()A. B. C. D.7.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f,则第八个单音的频率为A. B.C. D.8.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”意思为有一个人要走378里路,第一天健步行走,从第二天起脚痛,每天走的路程为前一天的一半,走了六天恰好到达目的地,请问第二天比第四天多走了()A.96里 B.72里 C.48里 D.24里9.一个四棱锥的三视图如图所示(其中主视图也叫正视图,左视图也叫侧视图),则这个四棱锥中最最长棱的长度是().A. B. C. D.10.设为定义在上的奇函数,当时,(为常数),则不等式的解集为()A. B. C. D.11.记个两两无交集的区间的并集为阶区间如为2阶区间,设函数,则不等式的解集为()A.2阶区间 B.3阶区间 C.4阶区间 D.5阶区间12.如图,正方形网格纸中的实线图形是一个多面体的三视图,则该多面体各表面所在平面互相垂直的有()A.2对 B.3对C.4对 D.5对二、填空题:本题共4小题,每小题5分,共20分。13.在等差数列()中,若,,则的值是______.14.已知三棱锥,,是边长为4的正三角形,,分别是、的中点,为棱上一动点(点除外),,若异面直线与所成的角为,且,则______.15.设f(x)=etx(t>0),过点P(t,0)且平行于y轴的直线与曲线C:y=f(x)的交点为Q,曲线C过点Q的切线交x轴于点R,若S(1,f(1)),则△PRS的面积的最小值是_____.16.已知边长为的菱形中,,现沿对角线折起,使得二面角为,此时点,,,在同一个球面上,则该球的表面积为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知抛物线的准线过椭圆C:(a>b>0)的左焦点F,且点F到直线l:(c为椭圆焦距的一半)的距离为4.(1)求椭圆C的标准方程;(2)过点F做直线与椭圆C交于A,B两点,P是AB的中点,线段AB的中垂线交直线l于点Q.若,求直线AB的方程.18.(12分)如图,在四面体中,.(1)求证:平面平面;(2)若,求四面体的体积.19.(12分)如图,在矩形中,,,点分别是线段的中点,分别将沿折起,沿折起,使得重合于点,连结.(Ⅰ)求证:平面平面;(Ⅱ)求直线与平面所成角的正弦值.20.(12分)已知是各项都为正数的数列,其前项和为,且为与的等差中项.(1)求证:数列为等差数列;(2)设,求的前100项和.21.(12分)如图,三棱台的底面是正三角形,平面平面,.(1)求证:;(2)若,求直线与平面所成角的正弦值.22.(10分)已知函数,它的导函数为.(1)当时,求的零点;(2)当时,证明:.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
由于是放回抽取,故每次的情况有4种,共有64种;先找到最大值不是4的情况,即三次取出标号均不为4的球的情况,进而求解.【详解】所有可能的情况有种,其中最大值不是4的情况有种,所以取得小球标号最大值是4的取法有种,故选:C【点睛】本题考查古典概型,考查补集思想的应用,属于基础题.2、B【解析】
设点、,并设直线的方程为,由得,将直线的方程代入韦达定理,求得,结合的面积求得的值,结合焦点弦长公式可求得.【详解】设点、,并设直线的方程为,将直线的方程与抛物线方程联立,消去得,由韦达定理得,,,,,,,,可得,,抛物线的准线与轴交于,的面积为,解得,则抛物线的方程为,所以,.故选:B.【点睛】本题考查抛物线焦点弦长的计算,计算出抛物线的方程是解答的关键,考查计算能力,属于中等题.3、A【解析】
先求的展开式,再分类分析中用哪一项与相乘,将所有结果为常数的相加,即为展开式的常数项,从而求出的值.【详解】展开式的通项为,当取2时,常数项为,当取时,常数项为由题知,则.故选:A.【点睛】本题考查了两个二项式乘积的展开式中的系数问题,其中对所取的项要进行分类讨论,属于基础题.4、C【解析】
根据线面的位置关系,结合线面平行的判定定理、平行线的性质进行判断即可.【详解】A:当时,也可以满足∥,b∥,故本命题不正确;B:当时,也可以满足,,故本命题不正确;C:根据平行线的性质可知:当∥,,时,能得到,故本命题是正确的;D:当时,也可以满足,b∥,故本命题不正确.故选:C【点睛】本题考查了线面的位置关系,考查了平行线的性质,考查了推理论证能力.5、C【解析】
根据函数的奇偶性及函数在时的符号,即可求解.【详解】由可知函数为奇函数.所以函数图象关于原点对称,排除选项A,B;当时,,,排除选项D,故选:C.【点睛】本题主要考查了函数的奇偶性的判定及奇偶函数图像的对称性,属于中档题.6、D【解析】
设双曲线C的左焦点为,连接,由对称性可知四边形是平行四边形,设,得,求出的值,即得解.【详解】设双曲线C的左焦点为,连接,由对称性可知四边形是平行四边形,所以,.设,则,又.故,所以.故选:D【点睛】本题主要考查双曲线的简单几何性质,考查余弦定理解三角形和三角形面积的计算,意在考查学生对这些知识的理解掌握水平.7、D【解析】分析:根据等比数列的定义可知每一个单音的频率成等比数列,利用等比数列的相关性质可解.详解:因为每一个单音与前一个单音频率比为,所以,又,则故选D.点睛:此题考查等比数列的实际应用,解决本题的关键是能够判断单音成等比数列.等比数列的判断方法主要有如下两种:(1)定义法,若()或(),数列是等比数列;(2)等比中项公式法,若数列中,且(),则数列是等比数列.8、B【解析】
人每天走的路程构成公比为的等比数列,设此人第一天走的路程为,计算,代入得到答案.【详解】由题意可知此人每天走的路程构成公比为的等比数列,设此人第一天走的路程为,则,解得,从而可得,故.故选:.【点睛】本题考查了等比数列的应用,意在考查学生的计算能力和应用能力.9、A【解析】
作出其直观图,然后结合数据根据勾股定定理计算每一条棱长即可.【详解】根据三视图作出该四棱锥的直观图,如图所示,其中底面是直角梯形,且,,平面,且,∴,,,,∴这个四棱锥中最长棱的长度是.故选.【点睛】本题考查了四棱锥的三视图的有关计算,正确还原直观图是解题关键,属于基础题.10、D【解析】
由可得,所以,由为定义在上的奇函数结合增函数+增函数=增函数,可知在上单调递增,注意到,再利用函数单调性即可解决.【详解】因为在上是奇函数.所以,解得,所以当时,,且时,单调递增,所以在上单调递增,因为,故有,解得.故选:D.【点睛】本题考查利用函数的奇偶性、单调性解不等式,考查学生对函数性质的灵活运用能力,是一道中档题.11、D【解析】
可判断函数为奇函数,先讨论当且时的导数情况,再画出函数大致图形,将所求区间端点值分别看作对应常函数,再由图形确定具体自变量范围即可求解【详解】当且时,.令得.可得和的变化情况如下表:令,则原不等式变为,由图像知的解集为,再次由图像得到的解集由5段分离的部分组成,所以解集为5阶区间.故选:D【点睛】本题考查由函数的奇偶性,单调性求解对应自变量范围,导数法研究函数增减性,数形结合思想,转化与化归思想,属于难题12、C【解析】
画出该几何体的直观图,易证平面平面,平面平面,平面平面,平面平面,从而可选出答案.【详解】该几何体是一个四棱锥,直观图如下图所示,易知平面平面,作PO⊥AD于O,则有PO⊥平面ABCD,PO⊥CD,又AD⊥CD,所以,CD⊥平面PAD,所以平面平面,同理可证:平面平面,由三视图可知:PO=AO=OD,所以,AP⊥PD,又AP⊥CD,所以,AP⊥平面PCD,所以,平面平面,所以该多面体各表面所在平面互相垂直的有4对.【点睛】本题考查了空间几何体的三视图,考查了四棱锥的结构特征,考查了面面垂直的证明,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、-15【解析】
是等差数列,则有,可得的值,再由可得,计算即得.【详解】数列是等差数列,,又,,,故.故答案为:【点睛】本题考查等差数列的性质,也可以由已知条件求出和公差,再计算.14、【解析】
取的中点,连接,,取的中点,连接,,,直线与所成的角为,计算,,根据余弦定理计算得到答案。【详解】取的中点,连接,,依题意可得,,所以平面,所以,因为,分别、的中点,所以,因为,所以,所以平面,故,故,故两两垂直。取的中点,连接,,,因为,所以直线与所成的角为,设,则,,所以,化简得,解得,即.故答案为:.【点睛】本题考查了根据异面直线夹角求长度,意在考查学生的计算能力和空间想象能力.15、【解析】
计算R(t,0),PR=t﹣(t),△PRS的面积为S,导数S′,由S′=0得t=1,根据函数的单调性得到最值.【详解】∵PQ∥y轴,P(t,0),∴Q(t,f(t))即Q(t,),又f(x)=etx(t>0)的导数f′(x)=tetx,∴过Q的切线斜率k=t,设R(r,0),则k,∴r=t,即R(t,0),PR=t﹣(t),又S(1,f(1))即S(1,et),∴△PRS的面积为S,导数S′,由S′=0得t=1,当t>1时,S′>0,当0<t<1时,S′<0,∴t=1为极小值点,也为最小值点,∴△PRS的面积的最小值为.故答案为:.【点睛】本题考查了利用导数求面积的最值问题,意在考查学生的计算能力和应用能力.16、【解析】
分别取,的中点,,连接,由图形的对称性可知球心必在的延长线上,设球心为,半径为,,由勾股定理可得、,再根据球的面积公式计算可得;【详解】如图,分别取,的中点,,连接,则易得,,,,由图形的对称性可知球心必在的延长线上,设球心为,半径为,,可得,解得,.故该球的表面积为.故答案为:【点睛】本题考查多面体的外接球的计算,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)或.【解析】
(1)由抛物线的准线方程求出的值,确定左焦点坐标,再由点F到直线l:的距离为4,求出即可;(2)设直线方程,与椭圆方程联立,运用根与系数关系和弦长公式,以及两直线垂直的条件和中点坐标公式,即可得到所求直线的方程.【详解】(1)抛物线的准线方程为,,直线,点F到直线l的距离为,,所以椭圆的标准方程为;(2)依题意斜率不为0,又过点,设方程为,联立,消去得,,,设,,,,线段AB的中垂线交直线l于点Q,所以横坐标为3,,,,平方整理得,解得或(舍去),,所求的直线方程为或.【点睛】本题考查椭圆的方程以及直线与椭圆的位置关系,要熟练应用根与系数关系、相交弦长公式,合理运用两点间的距离公式,考查计算求解能力,属于中档题.18、(1)证明见解析;(2).【解析】
(1)取中点,连接,根据等腰三角形的性质得到,利用全等三角形证得,由此证得平面,进而证得平面平面.(2)由(1)知平面,即是四面体的面上的高,结合锥体体积公式,求得四面体的体积.【详解】(1)证明:如图,取中点,连接,由则,则,故故,平面.又平面,故平面平面(2)由(1)知平面,即是四面体的面上的高,且.在中,,由勾股定理易知故四面体的体积【点睛】本小题主要考查面面垂直的证明,考查锥体体积计算,考查空间想象能力和逻辑推理能力,属于中档题.19、(Ⅰ)详见解析;(Ⅱ).【解析】
(Ⅰ)根据,,可得平面,故而平面平面.(Ⅱ)过作于,则可证平面,故为所求角,在中利用余弦定理计算,再计算.【详解】解:(Ⅰ)因为,,,平面,平面所以平面,又平面,所以平面平面;(Ⅱ)过作于,则由平面,且平面知,所以平面,从而是直线与平面所成角.因为,,,所以,从而.【点睛】本题考查了面面垂直的判定,考查直线与平面所成角的计算,属于中档题.20、(1)证明见解析;(2).【解析】
(1)利用已知条件化简出,当时,,当时,再利用进行化简,得出,即可证明出为等差数列;(2)根据(1)中,求出数列的通项公式,再化简出,可直接求出的前100项和.【详解】解:(1)由题意知,即,①当时,由①式可得;又时,有,代入①式得,整理得,∴是首项为1,公差为1的等差数列.(2)由(1)可得,∵是各项都为正数,∴,∴,又,∴,则,,即:.∴的前100项和.【点睛】本题考查数列递推关系的应用,通项公式的求法以及裂项相消法求和,考查分析
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 关于金属材料服务协议合同模板
- 国内金融租赁合同金额
- 2024-2025学年新教材高中政治第2单元认识社会与价值选择第4课第1框人的认识从何而来练习含解析部编版必修4
- 脑梗死手术后病人的护理
- 2024热水工程合同书范本
- 2024ui设计外包文档ui设计外包合同范本
- 专题13 习作训练(讲义+试题) -2023年四升五语文暑假衔接课(统编版)
- 2024广告服务合同范本
- 2024建筑工程设计居间合同范本
- 2024建筑工程拆迁房屋合同格式工程
- 知识产权结构化面试问题
- 人才梯队(人才库、人才盘点)建设方案
- 《春夏秋冬》教学设计与指导课件(第一课时)
- 《小学教育概统》课件
- 市场工作研讨会接待方案
- 2024版职业发展规划医疗人员的成长路径和晋升机会培训课件
- GH/T 1420-2023野生食用菌保育促繁技术规程松茸
- 工程造价审计投标方案(技术标)
- PaaS开发运营三级理论考试题库(汇总)
- 中药对妇科疾病的作用研究
- 《国家基本专业档案目录》解读
评论
0/150
提交评论