河海大学土力学英文教案Chapter-2-Permeability-of-Soil_第1页
河海大学土力学英文教案Chapter-2-Permeability-of-Soil_第2页
河海大学土力学英文教案Chapter-2-Permeability-of-Soil_第3页
河海大学土力学英文教案Chapter-2-Permeability-of-Soil_第4页
河海大学土力学英文教案Chapter-2-Permeability-of-Soil_第5页
已阅读5页,还剩28页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Chapter2PermeabilityofSoil2.1 IntroductionSoilsareassemblagesofsolidparticleswithinterconnectedvoidsthroughwhichwatercanflowfromapointofhighenergytoapointoflowenergy.Thestudyoftheflowofwaterthroughporoussoilmediaisimportantinsoilmechanics.Thisisnecessaryforestimatingthequantityofundergroundseepageundervarioushydraulicconditions;forinvestigatingproblemsinvolvingthepumpingofwaterforundergroundconstructions;andformakingstabilityanalysesofearthdamsandearth-retainingstructuresthataresubjectedtoseepageforces.(i) HydrostaticGroundwaterCondition(静水条件)Pore-waterpressure(u,孔隙水压力)atadepthzbelowthewatertableisdefinedas (3.1)wherewisunitweightofthewater(水的重度)andzisdepth(深度)ofthewaterbelowgroundwatertable.TotalHead(总水头)Thetotalhead(h)isrelatedtothepore-waterpressure(u)andelevationhead(z)bythefollowingequation: (3.2)zofequation(3.2)isdefinedwithrespecttoachosendatum.GroundwaterFlowWaterwillflowthroughthesoil(sayfrompointAtoB)ifhydraulicgradient(oradifferenceintotalhead)existsbetweenpointsAandB.2.2 Darcy’sLaw(达西定律)In1856,Darcypublishedasimpleequationforthedischargevelocityofwaterthroughsaturatedsoils,whichmaybeexpressedas (3.3)whereq=flowrate(m3/s),渗流量i=hydraulicgradient水力梯度h=totalheaddifference(m)水头差L=lengthofflow(m)渗径长度k=coefficientofpermeability(m/s)渗透系数A=cross-sectionalareaofthespecimen(m2)横截面积Equation(3.3)impliesthattheflowrate(q)bearsalinearrelationshiptothehydraulicgradient(i).However,anon-linearrelationshipbetweenqandiisfoundforclay[叁考:土力学p.69图3-3].Forpracticalreason,thefollowingrelationshipbetweenqandiisassumedforclay: (3.3a)whereibisstartinghydraulicgradient(起始水力梯度).Forgravellysoil(砾土),linearrelationshipbetweenqandiappearsatsmallhydraulicgradientonly.Ashydraulicgradientincreasesbeyondacriticalvalue,therelationshipbecomesnon-linearastheflowbecomesturbulent(紊流)[叁考:土力学p.69图3-3].Darcy’slawisvalidforlaminarflow(层流)conditionwhereReynoldsnumbersissmallerthanorequalto1.Reynoldsnumbers(雷诺数)isdefinedasfollows: (3.4)whereisdensityofwater(水的密度),visvelocityofwater(流速),isviscosityofwater(水的粘滞系数)anddisaveragediameterofsoilgrains(土粒子平均粒径).As=1g/cm3,v=0.25cm/s,=0.0131g/scmattemperatureof10C,discalculatedbyequation(3.4)ThusDarcy’slawcanbeappliedtosoilswhicharefinerthancoarsesand.2.3 DeterminationofCoefficientofPermeability(渗透系数的测定)2.3.1Constantheadtest(常水头测试)AtypicalarrangementoftheconstantheadpermeabilitytestisshowninFig.2.1.Inthesetup,thetotalwaterheadisalwaysmaintainedconstantduringtheperiodofthetest.Theconstantheadtestissuitableforcoarse-grainedsoils.Thecoefficientofpermeabilityiscalculatedbythefollowingequation: (3.5)whereVisvolumeofwatercollected,Lislengthofthespecimen,Aiscross-sectionalareaofthespecimen,histotalheaddifferenceandtisdurationofthetest.2.3.2FallingHeadTest(变水头测试)AtypicalarrangementofthefallingheadpermeabilitytestisshowninFig.2.2.Itissuitableforfine-grainedsoils.Therateofflowofwaterthroughthespecimenatanytimetisgivenby (3.6a)whereVisvolumeofwatercollected,Lislengthofthespecimen,A1iscross-sectionalareaofthespecimen,A2iscross-sectionalareaofthestandpipeandhistotalheaddifference.Re-arrangingequation(3.6a)into (3.6b)Integratingequation(3.6b) (3.6c)ThevaluesofkfordifferenttypesofsoilaretypicallywithintherangesshowninTable2.1.2.4 SeepageandFlowNets(渗流和流网)2.4.1Laplace’sequationLaplacedifferentialequationofcontinuityisusedtodescribethetwo-dimensionalsteadyflowconditionforagivenpointinthesoilmass.LetusconsiderasoilelementasshowninFig.2.3.Theelementhasdimensionofdxanddzinxandzdirection,respectively.Waterflowsthroughtheelementduetoahydraulicheaddifferencebetweenupstreamanddownstreamside.Letvxandvzbethedischargevelocityinthexandzdirection,respectively.Theratesofflowofwaterintotheelementinthexandzdirectionare (3.7a) (3.7b)Theratesofflowofwateroutoftheelementinthexandzdirectionare (3.7c) (3.7d)Assumingwaterisincompressibleandnovolumechangeinthesoilmassoccurs,thetotalrateofinflowshouldbeequaltothetotalrateofoutflow (3.7e)UsingDarcy’slaw,vxandvzcanbeexpressedas (3.7f) (3.7g)Substitutingequations(3.7f)and(3.7g)intoequation(3.7e) (3.7h)Ifthesoilisisotropickx=kz,equation(3.7h)becomes (3.7i)2.4.2FlowNetsThecontinuityequation[equation(3.7i)]inisotropicmediumrepresentstwoorthogonalfamiliesofcurves–thatis,theflowlines(流线)andequipotentiallines(等势线).Aflowlineisalinealongwhichawaterparticlewilltravelfromupstreamtothedownstreamsideinthepermeablesoilmedium.Anequipotentiallineisalinealongwhichthetotalhead(总水头)atallpointsisthesame.Ifpiezometers(测压计)areplacedatdifferentpointsalonganequipotentialline,theheightofwaterwillrisetothesameelevationinallofthem.Acombinationofanumberofflowlinesandequipotentiallinesiscalledaflownet.Tocompletethegraphicalconstructionofaflownet,theflowandequipotentiallinesaredrawninsuchawaythat(i)theequipotentiallinesintersecttheflowlinesatrightangle,(ii)theflowelementsareapproximatesquares,(iii)theupstreamanddownstreamsurfacesofthepermeablelayerareequipotentiallinesand(iv)theboundaryoftheimpervouslayerisaflowline.Basedontheflownet,thetotalflowrate(q)canbeestimatedby (3.8)whereHisthetotalheaddifferencebetweentheupstreamanddownstreamsides,NfisthenumberofflowchannelsandNdisthenumberofequipotentialdrops. Inaddition,thepore-waterpressure(u)atagivenpointAdeterminedfromtheflownetis (3.9a) (3.9b)whereHistotalheaddifference,Ndistotalnumberofequipotentialdrops,ndisnumberofequipotentialdropsatpointA,htistotalheadatpointAandheiselevationheadatpointA.2.5Effectivestress(有效应力)2.5.1EffectivestressprincipleEffectivestress(’)isdefinedas (3.10a)whereNsisthesumofinter-contactforcesandAisthecross-sectionalareaofthesoilmassunderconsideration.Totalstress()isdefinedas (3.10b)whereAsiscross-sectionalareaofthesoilmassoccupiedbysolid-to-solidcontacts.AstheratioAs/Aissmallandcanbeneglectedforpressurerangesencounteredinpracticalproblems.Thus,equation(3.10b)becomes (3.11)2.5.2Pore-waterpressureandeffectivestressunderhydrostaticconditionThetotalstressatdepthzis (3.12a)Thepore-waterpressureatdepthzis (3.12b)Theeffectivestressatdepthzis (3.12c)wheresatissaturatedunitweightofsoil,wisunitweightofwaterand’issubmergedunitweightofsoil.2.5.3Pore-waterpressureandeffectivestressunderseepage(i) Downwardseepage Thepore-waterpressureatdepthzisreducedbecauseofthedownwardflowofwater (3.13a)wherehisthehydraulicheaddifferencebetweengroundsurfaceanddepthz.Theeffectivestressatdepthzbecomes (3.13b)(ii) Upwardseepage Thepore-waterpressureatdepthzisincreasedbecauseoftheupwardflowofwater (3.14a)wherehisthehydraulicheaddifferencebetweengroundsurfaceanddepthz.Theeffectivestressatdepthzbecomes (3.14b)2.5.4Criticalhydraulicgradient(临界水力梯度)Atboilingorquickconditionunderacriticalhydraulicgradient(ic),theweightofthesoilwillbebalancedbytheupwardseepageforcesuchthattheeffectivestressbecomeszero.Fromequation(3.14b) (3.15)whereeisvoidratioandnisporosity.Table2.1Typicalvaluesofcoefficientsofpermeability(k)Soiltypek(cm/s)Gravel(砾石)>10-1Mixtureofgravelandsand(砾石与砂混合物)10-3–10-1Finesand(细砂)10-5–10-3Mixtureofsand,siltandclay(砂,粉土与粘土混合物)10-7–10-5Clay(粘土)<10-7KeywordsClay粘土Constantheadtest常水头测试Cross-sectionalarea横截面积Darcy’sLaw达西定律Density密度Diameterofsoilgrains土粒子粒径Dischargevelocity渗透速度EffectiveStress有效应力Equipotentialline等势线Fallingheadtest变水头测试Flowline流线Flownet流网Flowrate渗流量Gravel砾石HydraulicHead水头Hydraulicheaddifference水头差Hydraulicgradient水力梯度Breakinghydraulicgradient起始水力梯度Criticalhydraulicgradient临界水力梯度Hydrostaticcondition静水条件Laminarflow层流LaplaceEquation拉普拉斯方程Mixture混合物Permeability渗透性Coefficientofpermeability渗透系数Pore-waterpressure孔隙水压力Porosity孔隙率Reynoldsnumbers雷诺数Sand砂土Seepage渗流SeepageForce渗流力Silt粉土TotalStress总应力Turbulentflow紊流Viscosity粘滞系数Voidratio孔隙比Fig.2.1SetupofconstantheadpermeabilitytestFig.2.2SetupoffallingheadpermeabilitytestFig.2.3SeepagethroughasoilelementChapter3Stressesinsoil(土体应力)3.1 IntroductionSoilmasscanbearloadingsfromstructuresaswellasitsself-weight.Stressesareproducedduetotheseloadings.Thestressesareusedtoevaluatethedeformationofthestructuresfoundedonthesoilmassandthestabilityofthesoilmass.Thischapterpresentsthemethodstodeterminetheselfweightandadditionalstressesactedonasoilmass.3.2 In-situstresses(原位应力)3.2.1Effectiveverticalstress(竖向应力)Theeffectiveverticalstress(’z)iscalculatedfromtheunitweightofthesoil(土的重度),.(i)Nogroundwatertable(地下水位)exists[叁考:土力学p.39图2-1] (3.1)where(kN/m3)isunitweightofthesoilandz(m)isdepthofthesoil.(ii)Groundwatertablelocatesatthegroundsurface (3.2)where’(kN/m3)issubmergedunitweightofthesoil(土的浮重度)andw(9.81kN/m3)isunitweightofwater(水的浮重度).(iii)Ifthegroundconsistsofndifferentlayersofstratum(土层) (3.3)whereiandziareunitweightanddepthofthesoiloftheithstratum,respectively.3.2.2Effectivehorizontalstress(侧向应力)Theeffectivehorizontalstress(’h)ismuchmoredifficulttobeevaluated.Normally,thehorizontalstressisexpressedasafunctionverticalstressbythefollowingexpression: (3.4)whereKoiscoefficientofearthpressureatrest(静止侧压力系数).TypicalvaluesofKoarelistedinTable3.1.3.3 Contactpressuresatthebottomofthefoundation(基底压力)3.3.1FlexibleandrigidfoundationsThepressuredistributionbeneathafoundationdependsonthetypeofload,theflexuralrigidityofthefoundationandthetypeofmaterialonwhichitisresting.Aflexiblefoundation(柔性根底)haszerostiffnessbutarigidfoundation(刚性根底)hasinfinitestiffness.Auniformlyloadedflexiblefoundations(e.g.oiltankandearthdam)restingonanelasticmaterialsuchassaturatedclaywilltakeasaggingprofileandthecontactpressureisalsouniformlydistributed[叁考:土力学p.41图2-4].Arigidfoundation(e.g.concretedam,boxfoundation)restingonsaturatedclaywillundergouniformsettlementandthecontactpressuredistributionlookslikeasaddle,i.e.largeattheedgebutsmallinthemiddle[叁考:土力学p.42图2-5].Ifthesizeofthefoundationisnottoolargeandtheappliedloadissmall,lineardistributionofthecontactpressurecanbeused.3.3.2Pressuredistributionatthebottomoftherigidfoundation(i)Verticalloadatthecenterofthefoundation(中心竖向荷载) (3.5)whereFvisthesumoftheappliedverticalload(竖向荷载)andtheweightofthefoundationandbackfill(根底和回填土的总重),ListhelengthofthefoundationandBisbreadthofthefoundation.(ii)Eccentricandverticalload(偏心竖向荷载) (3.6)whereeistheeccentricityofthetotalverticalload.Fore<L/6,atrapezoidalpressuredistribution,Fore=L/6,atriangularpressuredistribution,Fore>L/6,pmin<0,partofthefoundationisseparatedfromthesoilandthestressredistributestoatriangularpressuredistribution[叁考:土力学p.43图2-7e]withpmaxequalsto (3.7)(iii)Netpressureatthebottomofthefoundation(基底净压力)Beforetheconstructionofafoundation,thesoilexhibitsanoverburdenpressureduetoitsselfweight.Duringconstruction,soilisexcavatedtotheleveloffoundation.Thefinal(ornet)pressureexertedonthefoundationistheappliedpressureminustheweightoftheexcavatedsoil. (3.8)wherezoisdepthoffoundation.3.4 Stressincreaseduetosurfaceload(地基中的附加应力)3.4.1Stressesduetoaverticalpointload(竖向集中力作用下附加应力)Boussinesq(1883)solvedtheproblemofstressesproducedatanypointinahomogeneous(均质),elastic(弹性)andisotropic(各向同性)mediumastheresultofapointloadappliedonthesurfaceofasemi-infinitehalfspace(半无限空间体).Boussinesq’ssolutionforstressesatapointM[叁考:土力学p.47图2-10]duetothepointloadFis (3.9a) (3.9b) (3.9c) (3.9d) (3.9e) (3.9f) (3.9g) (3.9h)whereisPoisson’sratio.Equation(3.9c)canbere-arrangedasfollows: (3.9i)where (3.9j)Kisafunctionofr/z.Byusingtheprincipleofsuperposition(叠加原理),theverticalstressproducedatpointMduetoseveralpointloadsFi(i=1,2,…n)[叁考:土力学p.47图2-12]canbededucedfromequation(3.9j)andpresentedasfollows: (3.9k)3.4.2Stressincreasein3-dimensionalproblems(空间条件下的附加应力)(i) Verticalstressbeneaththecornerofaverticalanduniformlyloaded(竖直均布荷载)rectangularfoundation Letthenetpressureontherectangularareabeequaltop[叁考:土力学p.48图2-13].Thetotalloadontheelementaryareaispdxdy.Theverticalstress(dz)atpointMduetotheloadonthiselementaryareacanbeobtainedfromequation(3.9c) (3.10a)TheincreaseofstressatMduetotheentirerectangularloadedareacanbefoundbyintegratingequation(3.10a) (3.10b)wherem=L/Bandn=z/B,Lislengthoftherectangle,Bisbreadthoftherectangle,zisdepthofpointAfromthebottomofthefoundation.Equation(3.10b)canbere-writtenasfollows: (3.10c)KsisafunctionofmandnorL.Bandz.ValuesofKscanbeobtainedfrom土力学p.52表2-2.(ii) VerticalstressbeneaththecenterofaverticalanduniformlyloadedcircularfoundationLetthenetpressureonthecircularfoundationofradiusrobeequaltop[叁考:土力学p.52图2-18].Thetotalloadontheelementaryareaisprdrd.Theverticalstress(dz)atpointAbelowthecenterduetotheloadonthiselementaryareacanbeobtainedfromequation(3.9c)TheincreaseofstressatAduetotheentirecircularareacanbefoundbyintegratingdz (3.11)Krisafunctionofz/r0andvaluesofKraresummarizedin土力学p.55表2-5.3.4.3Stressincreasein2-dimensionalproblems(平面问题条件下的附加应力)(i) Stressesduetoalineload(线荷载)Thefigure[叁考:土力学p.56图2-19]showsalineloadofinfinitelength(ydirection)havingapressurep/unitlengthonthesurfaceofasemi-infinitesoilmass.Thetotalloadontheelementarylengthispdy.Theverticalstress(dz),horizontalstress(dx)andshearstress(xz)atpointAduetotheloadonthiselementarylengthcanbeobtainedfromequations(3.9c),(3.9a)and(3.9e),respectively.TheincreaseofstressesatMduetotheentirelineloadcanbefoundbyintegratingdz,dxandxz, (3.12a) (3.12b) (3.12c)where (3.12d) (3.12e)Thisisaplanestressproblemandfromtheoryofelasticity (3.12f)(ii) Verticalstressbeneathaverticalanduniformlyloadedstripfoundation(条形根底竖直均布荷载)Equation(3.12a)derivedfortheverticalstressincreasesastheresultofalineloadcanbeusedtodeterminethestressincreasesatapointduetoastriploadofwidthB[叁考:土力学p.56图2-20].Letthepressureactingonthefoundationbepnandconsideranelementarystripofofwidthd.Theloadperunitlengthofthisstripispnd.Thiselementarystripcanbetreatedasalineload.Theverticalstressincrease(dz)iscalculatedfromequation(3.12a)byreplacingpbypnd.andxby(x-).TheincreaseofstressesatAduetotheentirestriploadcanbefoundbyintegratingdz, (3.13a)where (3.13b)wherem=x/Bandn=z/BandvaluesofKzsaretabulatedin土力学p.59表2-6.Table3.1TypicalvaluesofKoSoiltypeKo(静止侧压力系数)Loosesands(松砂)0.40–0.45Densesands(密砂)0.45–0.50Well-compactedfills(压实填土)0.8–1.5Normallyconsolidatedclays(正常固结粘土)0.5–0.6Overconsolidatedclays(超固结粘土)1.0–4.0KeywordsClay粘土 Normallyconsolidatedclay正常固结粘土Overconsolidatedclay超固结粘土Coefficientofearthpressureatrest(Ko)静止侧压力系数Earthdam土坝Eccentric偏心Elastic弹性Fill填土 Backfill回填土Well-compactedfill压实填土Foundation根底 Bottomoffoundation基底 Flexiblefoundation柔性根底Rigidfoundation刚性根底Stripfoundation条形根底Groundwatertable地下水位Homogeneous均质In-situstresses原位应力Isotropic各向同性Load荷载 Horizontalload水平荷载Inclinedload倾斜荷载Lineload线荷载Triangularload三角形分布荷载Uniformload均布荷载Verticalload竖向荷载Verticalpointload竖向集中力Moment力矩Pressure压力 Netpressure净压力Principleofsuperposition叠加原理Right-angledtrapezoidalload直角梯形分布荷载Sand砂土 Loosesand松砂Densesand密砂Semi-infinitehalfspace半无限空间体Stratum土层Stress应力Horizontalstress侧向应力Stressincrease附加应力Verticalstress竖向应力Two-dimensionalproblem平面问题Unitweightofsoil土的重度Submergedunitweightofsoil土的浮重度Chapter4CompressibilityandConsolidationofSoil[土的压缩与固结]4.1 IntroductionTheprocessofconsolidation[固结]isoftenconfusedwiththeprocessofcompaction[压实].Compactionincreasesthedensityofanunsaturatedsoilbyreducingthevolumeofairinthevoids(seeFig.4.1).However,consolidationisatime-relatedprocessofincreasingthedensityofasaturatedsoilbydrainingsomeofthewateroutofthevoids(seeFig.4.1).Consolidationisgenerallyrelatedtofine-grainedsoils[幼粒土]suchassiltsandclays.Coarse-grainedsoils[粗粒土],suchassandsandgravels,alsoundergoconsolidationbutatamuchfasterrateduetotheirhighpermeability.Saturatedclaysconsolidateatamuchslowerrateduetotheirlowpermeability.Consolidationtheoryisrequiredforthepredictionofboththemagnitudeandtherateofconsolidationsettlements[沉降量与沉降速度]toensuretheserviceabilityofstructuresfoundedonacompressiblesoillayer.4.2 Asimpleone-dimensionalconsolidationmodel[单向固结模型]Sincewatercanflowoutofasaturatedsoilinanydirection,theprocessofconsolidationisessentiallythree-dimensional[三维].However,inmostfieldsituations,waterwillnotbeabletoflowoutofthesoilbyflowinghorizontallybecauseofthevastexpanseofthesoilinhorizontaldirection.Therefore,thedirectionofflowofwaterisprimarilyvertical[竖向]orone-dimensional.Asaresult,thesoillayerundergoesone-dimensional(1-D)consolidationsettlement[单向固结沉降]intheverticaldirection.Fig.4.2showsasimplemodelfor1-Dconsolidation.Thespring[弹簧]isanalogoustothesoilskeleton[土骨架].Thestifferthespring,thelessitwillcompress.Therefore,astiffsoilwillundergolesscompressionthanasoftsoil.Thestiffnessofasoil[土的硬度]influencesthemagnitudeofitsconsolidationsettlement.Thevalve[阀门]openingsizeisanalogoustothepermeabilityofthesoil[土的渗透性].Thesmallertheopening,thelongeritwilltakeforthewatertoflowoutanddissipateitspressure.Therefore,consolidationofafine-grainedsoiltakeslongertocompletethanthatofacoarse-grainedsoil.Permeabilityofasoilinfluencestherateofitsconsolidation.4.3 One-dimensionalconsolidationtest[单向固结试验] Theone-dimensional(1-D)consolidationtestisperformedinanoedometer[固结仪].AnoedometerisshowninFig.4.3.Thesoilspecimen[土样本]isinaformofadisc(normally20mminheightand80mmindiameter),whichisconfinedinasteelringandimmersedinawaterbath.Averticalload[竖向荷载]isappliedtocompressthespecimenandwaterispermittedtodrainawaythroughporousstones[透水石]placedatthetopandbottomofthespecimen.4.3.1Time-relatedconsolidation Foreachverticalloadincrement[竖向荷载增量],theverticalsettlement[竖向沉降]ofthesoilspecimenisrecordedusingadialgauge[百分表].Fig.4.4showsthetimerelationshipsofverticalsettlement,verticaltotalstress,excesspore-waterpressure[超孔隙水压力]andverticaleffectivestress.Initially,100%oftheverticalloadistakenbyporewaterbecause,duetolowpermeabilityofthesoilspecimen,theporewaterisunabletoflowoutofthevoidsquickly.Therefore,thereisverylittlesettlementofthesoilspecimenimmediatelyafterplacingtheverticalload.Thesettlementofsoilispossibleonlywhenthereisanincreaseineffectivestress,whichinturnrequiresthatthevoidratioofthesoilbereducedbytheexpulsionofporewater.Afterafewseconds,theporewaterbeginstoflowoutofthevoids.Thisresultsinadecreaseinexcessivepore-waterpressureandvoidratioofthesoilspecimenandanincreaseineffectivestress.Finally,allexcesspore-waterpressuredissipatesandtheverticaleffectivestressequalstotheverticaltotalstress.4.3.2CompressionCurve[压缩曲线]Severalincrementsofverticalstressareappliedinanoedometertest.Foreachincrement,thefinalsettlementofthesoilspecimenisrecorded.Theendpointsfromnumberofloadingandunloadingincrements[荷载与卸载增量]ofanoedometertestmaybeplottedasaconventionalstress-straincurve[应力-应变曲线]asshowninFig.4.5.Theincrementofverticalstrain[竖向应变增量](v)foreachloadingincrementisgivenby (4.1)wherehisthefinalsettlementfortheloadingincrement(i.e.thechangeinspecimenheight)andH0istheinitialspecimenheight[样本初始高度]beforeloadingincrementisapplied.(i) e:’vcurveAsthesoilspecimenisnotallowedtodeforminhorizontaldirection,thereisonlychangeinvoidratio.Thus,vcanbeexpressedintermsofthevoidratio[孔隙比](e)by (4.2)whereeisthechangeinvoidratioduetotheloadingincrementande0istheinitialvoidratioofthespecimen[初始孔隙比]beforeloadingincrementisapplied.Thetestresultsareplottedintermsofverticaleffectivestress(’v)andvoidratio(e)andshowninFig.4.6.Thecoefficientofvolumecompressibility[体积压缩系数](mv)isdefinedastheratioofchangeinvolumetricstrain(vol)overchangeinverticaleffectivestress(’v)andshownasfollows: (4.3)Theunitformvism2/kNanditsvaluedependsonthestressrangeoverwhichitiscalculated.Example:ConsiderthesecondloadingincrementshowninFig.4.7,(ii) e:log’vcurveThee:’vcurvebecomesalmostlinearif’visplottedonalogscaleasshowninFig.4.8.TheslopeoftheloadingcurveiscalledtheCompressionIndex[压缩指数](Cc)andisdimensionless.Itisdefinedas: (4.4)Thenegativesignisusedbecausethevoidratiodecreaseswhentheeffectivestressisincreased.TheslopeoftheunloadingcurveiscalledtheExpansionIndex[回弹指数](Ce)andiscalculatedusingthesameprocedure.(iii) OthercompressibilityparametersOedometricmodulus[侧限压缩模量](Es)isdefinedastheratioofverticaleffectivestress(’z)oververticalstrain(z)andshownasfollows: (4.5)FromgeneralisedHooke’slaw[广义虎克定律],elasticstrains[弹性应变]inx,yandzdirectionsareexpressedasfollows: (4.6a) (4.6b) (4.6c)whereEisYoung’smodulus[弹性模量].In1-Dconsolidation,x=y=0,thusEquations(4.6b)and(4.6c)become (4.6d) (4.6e)SubstituteEquation(4.6e)intoEquation(4.6d) (4.6f)Sincex=y=zK0,whereK0isthecoefficientofearthpressureatrest[静止土压力系数],therefore (4.6g)Inone-dimensionalconsolidation,substituteEquations(4.5)and(4.6f)intoEquation(4.6c)andre-arrangedtothefollowingexpression: (4.6h)4.4 Effectofstresshistory[应力历史]Fig.4.9showsthestresshistoryofaclaydeposit.Duetothemeltingoficeandgrounderosion,thepresentverticaleffectivestress(’v)issmallerthanthemaximumpasteffectiveverticalstress(’vmax).Overconsolidationratio[超固结比](OCR)isdefinedastheratioof’vmaxover’v: (4.7)’vmaxisalsocalledthepre-consolidationpressure[前期固结压力](’c).Asoilthathasneverexperiencedaverticaleffectivestressthatwasgreaterthanitspresentverticaleffectivestressiscalledanormallyconsolidated[正常固结土](NC)soil.TheOCRforanNCsoilisequalto1.MostNCsoilshavefairlylowshearstrength.Asoilthathasexperiencedaverticaleffectivestressthatwasgreaterthanitspresentverticaleffectivestressiscalledanoverconsolidated[超固结土](OC)soil.TheOCRforanOCsoilisgreaterthan1.MostOCsoilshavefairlyhighshearstrength.TheOCRcannothaveavaluelessthan1.The1-DconsolidationofanOCsoilisshowninFig.4.10.Theslopeofthecompressioncurveisfairlyflatuntilaverticaleffectivestressequaltothepre-consolidationpressure(’c)isreached.Beyondthispoint,theslopeofcompressioncurvebecomessteeper,i.e.thesoilbecomesmorecompressible.Infact,’cislikeayieldstress[屈服应力]forsoil.Thisfactcanbeappreciatedbyrotatingthecurveby90°inanti-clockwisedirection(seeFig.4.11).Doesn’tthiscurveresembletheextensioncurveofametalrod?4.5 Settlement[沉降]Ingeneral,thesettlementcausedinsoilduetoloadingmaybedividedintothreecategories: (4.8)whereStistotalsettlement,Siisimmediatesettlement[瞬时沉降],Scisprimaryconsolidation[主固结沉降]andSsissecondaryconsolidation[次固结沉降].Immediatesettlementisduetotheelasticdeformation[弹性变形]ofsaturatedsoilswithoutanychangeinthewatercontent.Thereisnovolumechangeofthesoilbutlateraldeformation.Immediatesettlementforfoundationsrestingonelasticmaterialcanbederivedfromthetheoryofelasticity[弹性理论]andexpressedas (4.9)wherepisthepressureatthebottomofthefoundation[基底压力],biswidthofthefoundation[根底的宽度](=diameterofcircularfoundation),EisYoung’smodulus[弹性模量]andIisinfluencefactor[影响系数].ValuesofIisfoundin土力学p.94表4-1. Primaryconsolidationisthesettlementduetothegradualdissipationoftheporewaterfromthesaturatedsoils.Thesecondaryconsolidationisthesettlementwithtimeunderconstanteffectivestress[有效应力不变下的沉降].Primaryconsolidationiscalculatedfromthefollowingtwo

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论