云南省玉溪市一中2025届高一数学第二学期期末经典模拟试题含解析_第1页
云南省玉溪市一中2025届高一数学第二学期期末经典模拟试题含解析_第2页
云南省玉溪市一中2025届高一数学第二学期期末经典模拟试题含解析_第3页
云南省玉溪市一中2025届高一数学第二学期期末经典模拟试题含解析_第4页
云南省玉溪市一中2025届高一数学第二学期期末经典模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省玉溪市一中2025届高一数学第二学期期末经典模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.甲、乙、丙、丁4名田径选手参加集训,将挑选一人参加400米比赛,他们最近10次测试成绩的平均数和方差如下表;根据表中数据,应选哪位选手参加比赛更有机会取得好成绩?()甲乙丙丁平均数59575957方差12121010A.甲 B.乙 C.丙 D.丁2.设,是椭圆的左、右焦点,过的直线交椭圆于A,B两点,若最大值为5,则椭圆的离心率为()A. B. C. D.3.已知集合,集合为整数集,则()A. B. C. D.4.某几何体的三视图如图所示(单位:),则该几何体的体积(单位:)是()A. B. C. D.5.将一个底面半径和高都是的圆柱挖去一个以上底面为底面,下底面圆心为顶点的圆锥后,剩余部分的体积记为,半径为的半球的体积记为,则与的大小关系为()A. B. C. D.不能确定6.要得到函数的图象,只需将函数的图象()A.向左平移个单位 B.向左平移个单位C.向右平移个单位 D.向右平移个单位7.在△ABC中,点D在边BC上,若,则A.+ B.+ C.+ D.+8.已知,则的值为()A. B. C. D.9.将数列中的所有项排成如下数阵:其中每一行项数是上一行项数的倍,且从第二行起每-行均构成公比为的等比数列,记数阵中的第列数构成的数列为,为数列的前项和,若,则等于()A. B. C. D.10.要得到函数y=cos4x+πA.向左平移π3个单位长度 B.向右平移πC.向左平移π12个单位长度 D.向右平移π二、填空题:本大题共6小题,每小题5分,共30分。11.已知向量,,若,则__________.12.如图是一个三角形数表,记,,…,分别表示第行从左向右数的第1个数,第2个数,…,第个数,则当,时,______.13.直线过点且倾斜角为,直线过点且与垂直,则与的交点坐标为____14.已知,则____________.15.一个等腰三角形的顶点,一底角顶点,另一顶点的轨迹方程是___16.已知点P是矩形ABCD边上的一动点,,,则的取值范围是________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某校进行学业水平模拟测试,随机抽取了名学生的数学成绩(满分分),绘制频率分布直方图,成绩不低于分的评定为“优秀”.(1)从该校随机选取一名学生,其数学成绩评定为“优秀”的概率;(2)估计该校数学平均分(同一组数据用该组区间的中点值作代表).18.在锐角中,角,,所对的边分别为,,.已知,.(1)求的值;(2)若,求的面积.19.已知函数的部分图象如图所示.(1)求与的值;(2)设的三个角、、所对的边依次为、、,如果,且,试求的取值范围;(3)求函数的最大值.20.在中,角,,所对的边分别为,,,且,.(1)求证:是锐角三角形;(2)若,求的面积.21.已知(1)化简;(2)若,求的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

由平均数及方差综合考虑得结论.【详解】解:由四位选手的平均数可知,乙与丁的平均速度快;再由方差越小发挥水平越稳定,可知丙与丁稳定,故应选丁选手参加比赛更有机会取得好成绩.故选:.【点睛】本题考查平均数与方差,熟记结论是关键,属于基础题.2、A【解析】

,故的最小值为,当且仅当轴时,最小,此时,计算得到答案.【详解】,最大值为5,故的最小值为,当且仅当轴时,最小,此时,即又因为,可得,故.故选:.【点睛】本题考查了椭圆的离心率,意在考查学生的计算能力和转化能力.3、A【解析】试题分析:,选A.【考点定位】集合的基本运算.4、B【解析】由三视图可知,该几何体是一个棱长为的正方体挖去一个圆锥的组合体,正方体体积为,圆锥体积为几何体的体积为,故选B.【方法点睛】本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响.5、C【解析】

根据题意分别表示出,通过比较。【详解】所以,选C。【点睛】,,。记住这几个公式即可,属于基础题目。6、C【解析】

考查三角函数图象平移,记得将变量前面系数提取.【详解】,所以只需将向右平移个单位.所以选择C【点睛】易错题,一定要将提出,否则容易错选D.7、C【解析】

根据向量减法和用表示,再根据向量加法用表示.【详解】如图:因为,所以,故选C.【点睛】本题考查向量几何运算的加减法,结合图形求解.8、B【解析】sin(π+α)−3cos(2π−α)=0,即:sinα+3cosα=0,①又∵sin2α+cos2α=1,②由①②联立解得:cos2α=.∴cos2α=2cos2α−1=.故选B.9、C【解析】

先确定为第11行第2个数,由可得,最后根据从第二行起每一行均构成公比为的等比数列即可得出结论.【详解】∵其中每一行项数是上一行项数的倍,第一行有一个数,前10行共计个数,即为第11行第2个数,又∵第列数构成的数列为,,∴当时,,∴第11行第1个数为108,∴,故选:C.【点睛】本题主要考查数列的性质和应用,本题解题的关键是为第11行第2个数,属于中档题.10、C【解析】

先化简得y=cos【详解】因为y=cos所以要得到函数y=cos4x+π3的图像,只需将函数故选:C【点睛】本题主要考查三角函数的图像的变换,意在考查学生对该知识的理解掌握水平,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、1【解析】由,得.即.解得.12、【解析】

由图表,利用归纳法,得出,再利用叠加法,即可求解数列的通项公式.【详解】由图表,可得,,,,,可归纳为,利用叠加法可得:,故答案为.【点睛】本题主要考查了归纳推理的应用,以及数列的叠加法的应用,其中解答中根据图表,利用归纳法,求得数列的递推关系式是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.13、【解析】

通过题意,求出两直线方程,联立方程即可得到交点坐标.【详解】根据题意可知,因此直线为:,由于直线与垂直,故,所以,所以直线为:,联立两直线方程,可得交点.【点睛】本题主要考查直线方程的相关计算,难度不大.14、【解析】

由已知结合同角三角函数基本关系式可得,然后分子分母同时除以求解.【详解】,.故答案为:.【点睛】本题考查三角函数的化简求值,考查同角三角函数基本关系式的应用,是基础的计算题.15、【解析】

设出点C的坐标,利用|AB|=|AC|,建立方程,根据A,B,C三点构成三角形,则三点不共线且B,C不重合,即可求得结论.【详解】设点的坐标为,则由得,化简得.∵A,B,C三点构成三角形∴三点不共线且B,C不重合因此顶点的轨迹方程为.故答案为【点睛】本题考查轨迹方程,考查学生的计算能力,属于基础题.16、【解析】

如图所示,以为轴,为轴建立直角坐标系,故,,设.,根据几何意义得到最值,【详解】如图所示:以为轴,为轴建立直角坐标系,故,,设.则.表示的几何意义为到点的距离的平方减去.根据图像知:当为或的中点时,有最小值为;当与中的一点时有最大值为.故答案为:.【点睛】本题考查了向量的数量积的范围,转化为几何意义是解题关键.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)该校数学平均分为.【解析】

(1)计算后两个矩形的面积之和,可得出结果;(2)将每个矩形底边中点值乘以相应矩形的面积,再将这些积相加可得出该校数学平均分.【详解】(1)从该校随机选取一名学生,成绩不低于分的评定为“优秀”的频率为,所以,数学成绩评定为“优秀”的概率为;(2)估计该校数学平均分.【点睛】本题考查频率分布直方图频率和平均数的计算,解题时要熟悉频率和平均数的计算原则,考查计算能力,属于基础题.18、(1)2;(2)3.【解析】

(1)利用正弦定理可得,消元后可得关于的三角方程,从该方程可得的值.(2)利用同角的三角函数的基本关系式结合(1)中的结果可得,再根据题设条件得到后再利用正弦定理可求的值,从而得到所求的面积.【详解】(1)在由正弦定理得,①,因为,所以,又因为,所以,整理得到,故.(2)在锐角中,因为,所以,将代入①得.在由正弦定理得,所以.【点睛】在解三角形中,如果题设条件是边角的混合关系,那么我们可以利用正弦定理或余弦定理把这种混合关系式转化为边的关系式或角的关系式.另外,三角形中共有七个几何量(三边三角以及外接圆的半径),一般地,知道两角及一边,用正弦定理.另外,如果知道两个角的三角函数值,则必定可以求第三角的三角函数值,此时涉及到的公式有同角的三角函数的基本关系式和两角和差的三角公式、倍角公式等.19、(1),;(2);(3).【解析】

(1)由图象有,可得的值,然后根据五点法作图可得,进而求出(2)根据,可得,然后由行列式求出,再由正弦定理转化为,根据的范围求出的范围(3)将化简到最简形式,然后逐步换元,转化为利用导数求值问题.【详解】(1)由函数图象可得,解得,再根据五点法作图可得,解得,.(2),由正弦定理知,,,,.(3)令,因为,所以,则,令,因为,所以,则令,则,只需求出的最大值,,令,则,当时,,此时单调递增,当时,,此时单调递减,.函数的最大值为.【点睛】本题主要考查了利用三角函数的部分图象求解析式和三角函数的图象与性质,考查了转化思想和数形结合思想,属于难题.20、(1)证明见解析(2)【解析】

(1)由正弦定理、余弦定理得,则角C最大,由余弦定理可得答案.

(2)由平面向量数量积的运算及三角形的面积公式结合(1)可得,利用面积公式可求解.【详解】【详解】

(1)由,根据正弦定理得,又,所以即,所以,因此边最大,即角最大.设则

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论