2025届海南省临高县新盈中学高一数学第二学期期末学业水平测试试题含解析_第1页
2025届海南省临高县新盈中学高一数学第二学期期末学业水平测试试题含解析_第2页
2025届海南省临高县新盈中学高一数学第二学期期末学业水平测试试题含解析_第3页
2025届海南省临高县新盈中学高一数学第二学期期末学业水平测试试题含解析_第4页
2025届海南省临高县新盈中学高一数学第二学期期末学业水平测试试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届海南省临高县新盈中学高一数学第二学期期末学业水平测试试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知向量,,如果向量与平行,则实数的值为()A. B. C. D.2.如右图所示,直线的斜率分别为则A. B.C. D.3.等差数列{an}的公差是2,若a2,a4A.n(n+1) B.n(n-1) C.n(n+1)2 D.4.已知数列满足,,则()A.1024 B.2048 C.1023 D.20475.若不等式对一切恒成立,则实数的最大值为()A.0 B.2 C. D.36.阿波罗尼斯是古希腊著名的数学家,与欧几里得、阿基米德被称为亚历山大时期数学三巨匠,他对几何问题有深刻而系统的研究,阿波罗尼斯圆是他的研究成果之一,指出的是:已知动点M与两定点A,B的距离之比为,那么点M的轨迹是一个圆,称之为阿波罗尼斯圆.请解答下面问题:已知,,若直线上存在点M满足,则实数c的取值范围是()A. B. C. D.7.己知数列和的通项公式分別内,,若,则数列中最小项的值为()A. B.24 C.6 D.78.下列函数中,在区间上是减函数的是()A. B. C. D.9.为了得到函数的图象,只需把函数的图象上的所有的点()A.向左平移个单位 B.向右平移个单位C.向左平移个单位 D.向右平移个单位10.在三棱柱中,已知,,此三棱柱各个顶点都在一个球面上,则球的体积为().A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,它的值域是__________.12.经过点且在x轴上的截距等于在y轴上的截距的直线方程是________.13.设为使互不重合的平面,是互不重合的直线,给出下列四个命题:①②③④若;其中正确命题的序号为.14.若角的终边经过点,则___________.15.若直线y=x+m与曲线x=恰有一个公共点,则实数m的取值范围是______.16.已知一个三角形的三边长分别为3,5,7,则该三角形的最大内角为_________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设一元二次不等式的解集为.(Ⅰ)当时,求;(Ⅱ)当时,求的取值范围.18.已知函数的图象过点.(1)求的值;(2)判断的奇偶性并证明.19.已知数列的递推公式为.(1)求证:数列为等比数列;(2)求数列的通项公式.20.定义:如果数列的任意连续三项均能构成一个三角形的三边长,则称为三角形”数列对于“三角形”数列,如果函数使得仍为一个三角形”数列,则称是数列的“保三角形函数”.(1)已知是首项为2,公差为1的等差数列,若,是数列的保三角形函数”,求的取值范围;(2)已知数列的首项为2019,是数列的前项和,且满足,证明是“三角形”数列;(3)求证:函数,是数列1,,的“保三角形函数”的充要条件是,.21.如图,四棱锥中,底面,,,点在线段上,且.(1)求证:平面;(2)若,,,求四棱锥的体积;

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

根据坐标运算求出和,利用平行关系得到方程,解方程求得结果.【详解】由题意得:,,解得:本题正确选项:【点睛】本题考查向量平行的坐标表示问题,属于基础题.2、C【解析】试题分析:由图可知,,所以,故选C.考点:直线的斜率.3、A【解析】试题分析:由已知得,a42=a2⋅a8,又因为{an}【考点】1、等差数列通项公式;2、等比中项;3、等差数列前n项和.4、C【解析】

根据叠加法求结果.【详解】因为,所以,因此,选C.【点睛】本题考查叠加法求通项以及等比数列求和,考查基本分析求解能力,属基础题.5、C【解析】

采用参变分离法对不等式变形,然后求解变形后的函数的值域,根据参数与新函数的关系求解参数最值.【详解】因为不等式对一切恒成立,所以对一切,,即恒成立.令.易知在内为增函数.所以当时,,所以的最大值是.故选C.【点睛】常见的求解参数范围的方法:(1)分类讨论法(从临界值、特殊值出发);(2)参变分离法(考虑新函数与参数的关系).6、B【解析】

根据题意设点M的坐标为,利用两点间的距离公式可得到关于的一元二次方程,只需即可求解.【详解】点M在直线上,不妨设点M的坐标为,由直线上存在点M满足,则,整理可得,,所以实数c的取值范围为.故选:B【点睛】本题考查了两点间的距离公式、一元二次不等式的解法,考查了学生分析问题解决问题的能力,属于中档题.7、D【解析】

根据两个数列的单调性,可确定数列,也就确定了其中的最小项.【详解】由已知数列是递增数列,数列是递减数列,且计算后知,又,∴数列中最小项的值是1.故选D.【点睛】本题考查数列的单调性,数列的最值.解题时依据题意确定大小即可.本题难度一般.8、C【解析】

根据初等函数的单调性对各个选项的函数的解析式进行逐一判断【详解】函数在单调递增,在单调递增.

在单调递减,在单调递增.故选:C【点睛】本题主要考查了基本初等函数的单调性的判断,属于基础试题.9、D【解析】

把系数2提取出来,即即可得结论.【详解】,因此要把图象向右平移个单位.故选D.【点睛】本题考查三角函数的图象平移变换.要注意平移变换是加减平移单位,即向右平移个单位得图象的解析式为而不是.10、A【解析】试题分析:直三棱柱的各项点都在同一个球面上,如图所示,所以中,,所以下底面的外心为的中点,同理,可得上底面的外心为的中点,连接,则与侧棱平行,所以平面,再取的中点,可得点到的距离相等,所以点是三棱柱的为接球的球心,因为直角中,,所以,即外接球的半径,因此三棱柱外接球的体积为,故选A.考点:组合体的结构特征;球的体积公式.【方法点晴】本题主要考查了球的组合体的结构特征、球的体积的计算,其中解答中涉及到三棱柱的线面位置关系、直三棱柱的结构特征、球的性质和球的体积公式等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力和学生的空间想象能力,试题有一定的难度,属于中档试题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

由反余弦函数的值域可求出函数的值域.【详解】,,因此,函数的值域为.故答案为:.【点睛】本题考查反三角函数值域的求解,解题的关键就是依据反余弦函数的值域进行计算,考查计算能力,属于基础题.12、或【解析】

当直线不过原点时,设直线的方程为,把点代入求得的值,即可求得直线方程,当直线过原点时,直线的方程为,综合可得答案.【详解】当直线不过原点时,设直线的方程为,把点代入可得:,即此时直线的方程为:当直线过原点时,直线的方程为,即综上可得:满足条件的直线方程为:或故答案为:或【点睛】过原点的直线横纵截距都为0,在解题的时候容易漏掉.13、④【解析】试题分析:根据线面平行的判定定理,面面平行的判定定理,面面平行的性质定理,及面面垂直的性质定理,对题目中的四个结论逐一进行分析,即可得到答案.解:当m∥n,n⊂α,,则m⊂α也可能成立,故①错误;当m⊂α,n⊂α,m∥β,n∥β,m与n相交时,α∥β,但m与n平行时,α与β不一定平行,故②错误;若α∥β,m⊂α,n⊂β,则m与n可能平行也可能异面,故③错误;若α⊥β,α∩β=m,n⊂α,n⊥m,由面面平行的性质,易得n⊥β,故④正确故答案为④考点:本题考查的知识点是平面与平面之间的位置关系,直线与平面之间的位置关系.点评:熟练掌握空间线与线,线与面,面与面之间的关系的判定方法及性质定理,是解答本题的关键,属于基础题.14、3【解析】

直接根据任意角三角函数的定义求解,再利用两角和的正切展开代入求解即可【详解】由任意角三角函数的定义可得:.则故答案为3【点睛】本题主要考查了任意角三角函数的定义和两角和的正切计算,熟记公式准确计算是关键,属于基础题.15、{m|-1<m≤1或m=-}【解析】

由x=,化简得x2+y2=1,注意到x≥0,所以这个曲线应该是半径为1,圆心是(0,0)的半圆,且其图象只在一、四象限.画出图象,这样因为直线与其只有一个交点,由此能求出实数m的取值范围.【详解】由x=,化简得x2+y2=1,注意到x≥0,所以这个曲线应该是半径为1,圆心是(0,0)的半圆,且其图象只在一、四象限.画出图象,这样因为直线与其只有一个交点,从图上看出其三个极端情况分别是:①直线在第四象限与曲线相切,②交曲线于(0,﹣1)和另一个点,③与曲线交于点(0,1).直线在第四象限与曲线相切时解得m=﹣,当直线y=x+m经过点(0,1)时,m=1.当直线y=x+m经过点(0,﹣1)时,m=﹣1,所以此时﹣1<m≤1.综上满足只有一个公共点的实数m的取值范围是:﹣1<m≤1或m=﹣.故答案为:{m|-1<m≤1或m=-}.【点睛】本题考查实数的取值范围的求法,是中档题,解题时要认真审题,注意数形结合思想的合理运用.16、【解析】

由题意可得三角形的最大内角即边7对的角,设为θ,由余弦定理可得cosθ的值,即可求得θ的值.【详解】根据三角形中,大边对大角,故边长分别为3,5,7的三角形的最大内角即边7对的角,设为θ,则由余弦定理可得cosθ,∴θ=,故答案为:C.【点睛】本题主要考查余弦定理的应用,大边对大角,已知三角函数值求角的大小,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ)(Ⅱ)【解析】

(Ⅰ)将代入得到关于的不等式,结合一元二次方程解一元二次不等式可求得集合;(Ⅱ)解集为即不等式恒成立,求解时结合与之对应的二次函数考虑可得到需满足的条件解不等式求的取值范围.【详解】(Ⅰ)当时,原不等式为:解方程得.(Ⅱ)由,即不等式的解集为R,则.18、(1),(2)奇函数,证明见解析【解析】

(1)将代入解析式,解方程即可.【详解】(1)由题知:,解得.(2).,定义域为:.,.所以,所以为奇函数.【点睛】本题第一问考查对数的运算,第二问考查函数奇偶的判断,属于中档题.19、(1)证明见解析;(2).【解析】

(1)直接利用数列的递推关系式证明结论;(2)由(1)可求出数列的通项公式,进而得到的通项公式.【详解】(1)∵数列{an}的首项a1=2,且,∴an+1+=3(an+),即∴是首项为,公比为3的等比数列;(2)由(1)可得a1+=,∴,∴数列的通项公式.【点睛】本题考查等比数列的证明考查了等比数列的通项公式,属于中档题.20、(1);(2)见解析;(3)见解析.【解析】

(1)先由条件得是三角形数列,再利用,是数列的“保三角形函数”,得到,解得的取值范围;(2)先利用条件求出数列的通项公式,再证明其满足“三角形”数列的定义即可;(3)根据函数,,是数列1,,的“保三角形函数”,可以得到①1,,是三角形数列,所以,即,②数列中的各项必须在定义域内,即,③,,是三角形数列;结论为在利用,是单调递减函数,就可求出对应的范围,即可证明.【详解】(1)解:显然,对任意正整数都成立,即是三角形数列,因为,显然有,由得,解得,所以当时,是数列的“保三角形函数”;(2)证:由,当时,,∴,∴,当时,即,解得,∴,∴数列是以2019为首项,以为公比的等比数列,∴,显然,因为,所以是“三角形”数列;(3)证:函数,是数列1,,的“保三角形函数”,必须满足三个条件:①1,,是三角形数列,所以,即;②数列中的各项必须在定义域内,即;③,,是三角形数列,由于,是单调递减函数,所以,解得,所以函数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论