2025届泰安市重点中学数学高一下期末复习检测试题含解析_第1页
2025届泰安市重点中学数学高一下期末复习检测试题含解析_第2页
2025届泰安市重点中学数学高一下期末复习检测试题含解析_第3页
2025届泰安市重点中学数学高一下期末复习检测试题含解析_第4页
2025届泰安市重点中学数学高一下期末复习检测试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届泰安市重点中学数学高一下期末复习检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图,矩形ABCD中,点E为边CD的中点,若在矩形ABCD内部随机取一个点Q,则点Q取自△ABE内部的概率等于A. B.C. D.2.设函数,则是()A.最小正周期为的奇函数 B.最小正周期为的偶函数C.最小正周期为的奇函数 D.最小正周期为的偶函数3.已知直线经过,两点,则直线的斜率为A. B. C. D.4.函数的图象的一条对称轴方程是()A. B. C. D.5.已知函数的部分图象如图,则的值为()A. B. C. D.6.已知是等差数列,其中,,则公差()A. B. C. D.7.已知点A(﹣1,0),B(1,0),C(0,1),直线y=ax+b(a>0)将△ABC分割为面积相等的两部分,则b的取值范围是()A.(0,1) B. C. D.8.已知角的终边上一点,且,则()A. B. C. D.9.在中,角,,所对的边分别为,,,若,,则等于()A.1 B.2 C. D.410.函数,是A.最小正周期为的奇函数 B.最小正周期为的偶函数C.最小正周期为的奇函数 D.最小正周期为的偶函数二、填空题:本大题共6小题,每小题5分,共30分。11.从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图).若要从身高,,三组内的学生中,用分层抽样的方法抽取18人参加一项活动,则从身高在内的学生中抽取的人数应为________.12.已知是等比数列,且,,那么________________.13.已知,,则______,______.14.在数列中,若,则____.15.在中,角所对的边分别为,,则____16.若直线l1:y=kx+1与直线l2关于点(2,3)对称,则直线l2恒过定点_____,l1与l2的距离的最大值是_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某高中非毕业班学生人数分布情况如下表,为了了解这2000个学生的体重情况,从中随机抽取160个学生并测量其体重数据,根据测量数据制作了下图所示的频率分布直方图.(1)为了使抽取的160个样品更具代表性,宜采取分层抽样,请你给出一个你认为合适的分层抽样方案,并确定每层应抽取的样品个数;(2)根据频率分布直方图,求的值,并估计全体非毕业班学生中体重在内的人数;(3)已知高一全体学生的平均体重为,高二全体学生的平均体重为,试估计全体非毕业班学生的平均体重.18.若在定义域内存在实数,使得成立,则称函数有“和一点”.(1)函数是否有“和一点”?请说明理由;(2)若函数有“和一点”,求实数的取值范围;(3)求证:有“和一点”.19.如图,四棱柱的底面是菱形,平面,,,,点为的中点.(1)求证:直线平面;(2)求证:平面;(3)求直线与平面所成的角的正切值.20.已知数列的前项和,且;(1)求它的通项.(2)若,求数列的前项和.21.设数列的前项和,数列为等比数列,且.(1)求数列和的通项公式;(2)设,求数列的前项和.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

利用几何概型的计算概率的方法解决本题,关键要弄准所求的随机事件发生的区域的面积和事件总体的区域面积,通过相除的方法完成本题的解答.【详解】解:由几何概型的计算方法,可以得出所求事件的概率为P=.故选C.【点评】本题考查概率的计算,考查几何概型的辨别,考查学生通过比例的方法计算概率的问题,考查学生分析问题解决问题的能力,考查学生几何图形面积的计算方法,属于基本题型.2、D【解析】函数,化简可得f(x)=–cos2x,∴f(x)是偶函数.最小正周期T==π,∴f(x)最小正周期为π的偶函数.故选D.3、C【解析】

由两点法求斜率的公式可直接计算斜率值.【详解】直线经过,两点,直线的斜率为.【点睛】本题考查用两点法求直线斜率,属于基础题.4、A【解析】

由,得,,故选A.5、B【解析】

根据函数的部分图象求出、、和的值,写出的解析式,再计算的值.【详解】根据函数,,的部分图象知,,,,解得;由五点法画图知,,解得;,.故选.【点睛】本题主要考查利用三角函数的部分图象求函数解析式以及利用两角和的正弦公式求三角函数的值.6、D【解析】

根据等差数列通项公式即可构造方程求得结果.【详解】故选:【点睛】本题考查等差数列基本量的计算,关键是熟练应用等差数列通项公式,属于基础题.7、B【解析】

先求得直线y=ax+b(a>0)与x轴的交点为M(,0),由0可得点M在射线OA上.求出直线和BC的交点N的坐标,①若点M和点A重合,求得b;②若点M在点O和点A之间,求得b;③若点M在点A的左侧,求得b>1.再把以上得到的三个b的范围取并集,可得结果.【详解】由题意可得,三角形ABC的面积为1,由于直线y=ax+b(a>0)与x轴的交点为M(,0),由直线y=ax+b(a>0)将△ABC分割为面积相等的两部分,可得b>0,故0,故点M在射线OA上.设直线y=ax+b和BC的交点为N,则由可得点N的坐标为(,).①若点M和点A重合,如图:则点N为线段BC的中点,故N(,),把A、N两点的坐标代入直线y=ax+b,求得a=b.②若点M在点O和点A之间,如图:此时b,点N在点B和点C之间,由题意可得三角形NMB的面积等于,即,即,可得a0,求得b,故有b.③若点M在点A的左侧,则b,由点M的横坐标1,求得b>a.设直线y=ax+b和AC的交点为P,则由求得点P的坐标为(,),此时,由题意可得,三角形CPN的面积等于,即•(1﹣b)•|xN﹣xP|,即(1﹣b)•||,化简可得2(1﹣b)2=|a2﹣1|.由于此时b>a>0,0<a<1,∴2(1﹣b)2=|a2﹣1|=1﹣a2.两边开方可得(1﹣b)1,∴1﹣b,化简可得b>1,故有1b.综上可得b的取值范围应是,故选B.【点睛】本题主要考查确定直线的要素,点到直线的距离公式以及三角形的面积公式的应用,还考查了运算能力以及综合分析能力,分类讨论思想,属于难题.8、B【解析】

由角的终边上一点得,根据条件解出即可【详解】由角的终边上一点得所以解得故选:B【点睛】本题考查的是三角函数的定义,较简单.9、D【解析】

直接利用正弦定理得到,带入化简得到答案.【详解】正弦定理:即:故选D【点睛】本题考查了正弦定理,意在考查学生的计算能力.10、A【解析】

判断函数函数,的奇偶性,求出其周期即可得到结论.【详解】设则故函数函数,是奇函数,由故函数,是最小正周期为的奇函数.故选A.【点睛】本题考查正弦函数的奇偶性和周期性,属基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、3【解析】

先由频率之和等于1得出的值,计算身高在,,的频率之比,根据比例得出身高在内的学生中抽取的人数.【详解】身高在,,的频率之比为所以从身高在内的学生中抽取的人数应为故答案为:【点睛】本题主要考查了根据频率分布直方图求参数的值以及分层抽样计算各层总数,属于中档题.12、【解析】

先根据等比数列性质化简方程,再根据平方性质得结果.【详解】∵是等比数列,且,,∴,即,则.【点睛】本题考查等比数列性质,考查基本求解能力.13、【解析】

由的值,可求出的值,再判断角的范围,可判断出,进而将平方,可求出答案.【详解】由题意,,因为,所以,即;又因为,所以,即,而,由于,可知,所以,则,即.故答案为:;.【点睛】本题考查同角三角函数基本关系的应用,考查二倍角公式的应用,考查学生的计算求解能力,属于中档题.14、【解析】

根据递推关系式,依次求得的值.【详解】由于,所以,.故答案为:【点睛】本小题主要考查根据递推关系式求数列某一项的值,属于基础题.15、【解析】

利用正弦定理将边角关系式中的边都化成角,再结合两角和差公式进行整理,从而得到.【详解】由正弦定理可得:即:本题正确结果:【点睛】本题考查李用正弦定理进行边角关系式的化简问题,属于常规题.16、(4,5)4.【解析】

根据所过定点与所过定点关于对称可得,与的距离的最大值就是两定点之间的距离.【详解】∵直线:经过定点,又两直线关于点对称,则两直线经过的定点也关于点对称∴直线恒过定点,∴与的距离的最大值就是两定点之间的距离,即为.故答案为:,.【点睛】本题考查了过两条直线交点的直线系方程,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2);1350人;(3)平均体重为.【解析】

(1)考虑到体重应与年级及性别均有关,最合理的分层应分为以下四层:高一男生,高一女生,高二男生,高二女生,高一男44人,高一女52人,高二男34人,高二女30人,由此能求出结果.(2)体重在之间的学生人数的率,从而,体重在,内人数的频率为0.675,由此能求出估计全体非毕业班学生体重在,内的人数.(3)设高一全体学生的平均体重为:,频率为,高二全体学生的平均体重为,频率为,由此能估计全体非毕业班学生的平均体重.【详解】(1)考虑到体重应与年级及性别均有关,最合理的分层应分为以下四层:高一男生、高一女生、高二男生、高二女生高一男:人,高一女:人高二男:,高二女:人可能的方案一:按性别分为两层,男生与女生男生人数:人,女生人数:人可能的方案二:按年级分为两层,高一学生与高二学生高一人数:人,高二人数:人(2)体重在70-80之间学生人数的频率:体重在内人数的频率为:∴估计全体非毕业班学生体重在内的人数为:人(3)设高一全体学生的平均体重为,频率为高二全体学生的平均体重为,频率为则估计全体非毕业班学生平均体重为答:估计全校非毕业班学生平均体重为.【点睛】本题考查频率分布直方图、频率、分层抽样、平均数等基础知识,考查运算求解能力,属于基础题.18、(1)不存在;(2)a>﹣2;(3)见解析【解析】

(1)解方程即可判断;(2)由题转化为2(x+1)+a+2x+1=2x+a+2x+2+a+2有解,分离参数a=2x﹣2求值域即可求解;(3)由题意判断方程cos(x+1)=cosx+cos1是否有解即可.【详解】(1)若函数有“和一点”,则不合题意故不存在(2)若函数f(x)=2x+a+2x有“和一点”.则方程f(x+1)=f(x)+f(1)有解,即2(x+1)+a+2x+1=2x+a+2x+2+a+2有解,即a=2x﹣2有解,故a>﹣2;(3)证明:令f(x+1)=f(x)+f(1),即cos(x+1)=cosx+cos1,即cosxcos1﹣sinxsin1﹣cosx=cos1,即(cos1﹣1)cosx﹣sinxsin1=cos1,故存在θ,故cos(x+θ)=cos1,即cos(x+θ)=cos1,即cos(x+θ),∵cos21﹣(2﹣2cos1)=cos21+2cos1﹣2<cos22cos22<0,故01,故方程cos(x+1)=cosx+cos1有解,即f(x)=cosx函数有“和一点”.【点睛】本题考查了新定义及分类讨论的思想应用,同时考查了三角函数的化简与应用,转化为有解问题是关键,是中档题19、(1)见解析;(2)见解析;(3)【解析】

(1)只需证明PO∥BD1,即可得BD1∥平面PAC;(2)只需证明AC⊥BD.DD1⊥AC.即可证明AC⊥平面BDD1B1(3)∠CPO就是直线CP与平面BDD1B1所成的角,在Rt△CPO中,tan∠CPO即可求解【详解】(1)设和交于点,连结,由于,分别是,的中点,故,∵平面,平面所以直线平面.(2)在四棱柱中,底面是菱形,则又平面,且平面,则,∵平面,平面,∴平面.(3)由(2)知平面.∴在平面内的射影为∴是与平面所成的角因为,所以为正三角形∴,在中,.∴与平面所成的角的正切值为.【点睛】本题考查了线面垂直、线面平行的判定定理、线面角,属于中档题.20、(1)(2)【解析】

(1)由,利用与的关系式,即可求得数列的通项公式;(2)由(1)可得,利用乘公比错位相减法,即可求得数列的前项和.【详解】(1)由,当时,;当时,,当也成立,所以则通项;(2)由(1)可得,-,,两式相减得所以数列的前项和为.【点睛】本题主要考查了数列和的关系、

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论