




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届云南省沾益县第四中学数学高一下期末考试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.阅读如图所示的程序框图,运行相应的程序,输出的结果是()A.3 B.11 C.38 D.1232.已知数列的通项公式是,则该数列的第五项是()A. B. C. D.3.已知向量,,则在方向上的投影为()A. B. C. D.4.设为正数,为的等差中项,为的等比中项,则与的大小关为()A. B. C. D.5.若是等比数列,下列结论中不正确的是()A.一定是等比数列; B.一定是等比数列;C.一定是等比数列; D.一定是等比数列6.现有1瓶矿泉水,编号从1至1.若从中抽取6瓶检验,用系统抽样方法确定所抽的编号为()A.3,13,23,33,43,53 B.2,14,26,38,42,56C.5,8,31,36,48,54 D.5,10,15,20,25,307.在中,角、、所对的边长分别为,,,,,,则的面积为()A. B. C. D.98.若实数满足约束条件则的最大值与最小值之和为()A. B. C. D.9.以下给出了4个命题:(1)两个长度相等的向量一定相等;(2)相等的向量起点必相同;(3)若,且,则;(4)若向量的模小于的模,则.其中正确命题的个数共有()A.3个 B.2个 C.1个 D.0个10.已知是等差数列的前项和,公差,,若成等比数列,则的最小值为()A. B.2 C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.如果数据的平均数是,则的平均数是________.12.不等式的解集为_________________;13.夏季某座高山上的温度从山脚起每升高100米降低0.8度,若山脚的温度是36度,山顶的温度是20度,则这座山的高度是________米14.已知向量、的夹角为,且,,则__________.15.设点是角终边上一点,若,则=____.16.在平行四边形中,=,边,的长分别为2,1.若,分别是边,上的点,且满足,则的取值范围是______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)当时,解不等式;(2)若不等式对恒成立,求m的取值范围.18.已知向量.(1)求的值;(2)若,且,求.19.在△ABC中,a=7,b=8,cosB=–.(Ⅰ)求∠A;(Ⅱ)求AC边上的高.20.同时抛掷两枚骰子,并记下二者向上的点数,求:二者点数相同的概率;两数之积为奇数的概率;二者的数字之和不超过5的概率.21.已知向量,,且,.(1)求函数和的解析式;(2)求函数的递增区间;(3)若函数的最小值为,求λ值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】试题分析:通过框图的要求;将第一次循环的结果写出,通过判断框;再将第二次循环的结果写出,通过判断框;输出结果.解;经过第一次循环得到a=12+2=3经过第一次循环得到a=32+2=11不满足判断框的条件,执行输出11故选B点评:本题考查程序框图中的循环结构常采用将前几次循环的结果写出找规律.2、A【解析】
代入即可得结果.【详解】解:由已知,故选:A.【点睛】本题考查数列的项和项数之间的关系,是基础题.3、D【解析】
直接利用向量的数量积和向量的投影的定义,即可求解,得到答案.【详解】由题意,向量,,则在方向上的投影为:.故选D.【点睛】本题主要考查了平面向量的数量积的应用,其中解答中熟记向量的数量积的运算公式,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.4、B【解析】
由等差中项及等比中项的运算可得,,再结合即可得解.【详解】解:因为为正数,为的等差中项,为的等比中项,则,,又,当且仅当时取等号,又,所以,故选:B.【点睛】本题考查了等差中项及等比中项的运算,重点考查了重要不等式的应用,属基础题.5、C【解析】
判断等比数列,可根据为常数来判断.【详解】设等比数列的公比为,则对A:为常数,故一定是等比数列;对B:为常数,故一定是等比数列;对C:当时,,此时为每项均为0的常数列;对D:为常数,故一定是等比数列.故选:C.【点睛】本题主要考查等比数列的判定,若数列的后项除以前一项为常数,则该数列为等比数列.本题选项C容易忽略时这种情况.6、A【解析】
根据系统抽样原则,可知编号成公差为的等差数列,观察选项得到结果.【详解】根据系统抽样原则,可知所抽取编号应成公差为的等差数列选项编号公差为;选项编号不成等差;选项编号公差为;可知错误选项编号满足公差为的等差数列,正确本题正确选项:【点睛】本题考查抽样方法中的系统抽样,关键是明确系统抽样的原则和特点,属于基础题.7、A【解析】
,利用正弦定理,和差公式化简可得,再利用三角形面积计算公式即可得出.【详解】化为:的面积故选:【点睛】本题考查正弦定理与两角和余弦公式化简求值,属于基础题.8、A【解析】
首先根据不等式组画出对应的可行域,再分别计算出顶点的坐标,带入目标函数求出相应的值,即可找到最大值和最小值.【详解】不等式组对应的可行域如图所示:,.,.,,.,,.故选:A【点睛】本题主要考查线性规划,根据不等式组画出可行域为解题的关键,属于简单题.9、D【解析】
利用向量的概念性质和向量的数量积对每一个命题逐一分析判断得解.【详解】(1)两个长度相等的向量不一定相等,因为它们可能方向不同,所以该命题是错误的;(2)相等的向量起点不一定相同,只要它们方向相同长度相等就是相等向量,所以该命题是错误的;(3)若,且,则是错误的,举一个反例,如,不一定相等,所以该命题是错误的;(4)若向量的模小于的模,则,是错误的,因为向量不能比较大小,因为向量既有大小又有方向,故该命题不正确.故选:D【点睛】本题主要考查向量的概念和数量积的计算,意在考查学生对这些知识的理解掌握水平.10、A【解析】
由成等比数列可得数列的公差,再利用等差数列的前项和公式及通项公式可得为关于的式子,再利用对勾函数求最小值.【详解】∵成等比数列,∴,解得:,∴,令,令,其中的整数,∵函数在递减,在递增,∴当时,;当时,,∴.故选:A.【点睛】本题考查等差数列与等比数列的基本量运算、函数的最值,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意为整数,如果利用基本不等式求解,等号是取不到的.二、填空题:本大题共6小题,每小题5分,共30分。11、5【解析】
根据平均数的定义计算.【详解】由题意,故答案为:5.【点睛】本题考查求新数据的均值.掌握均值定义是解题关键.实际上如果数据的平均数是,则新数据的平均数是.12、【解析】
根据绝对值定义去掉绝对值符号后再解不等式.【详解】时,原不等式可化为,,∴;时,原不等式可化为,,∴.综上原不等式的解为.故答案为.【点睛】本题考查解绝对值不等式,解绝对值不等式的常用方法是根据绝对值定义去掉绝对值符号,然后求解.13、2000【解析】
由题意得,温度下降了,再求出这个温度是由几段100米得出来的,最后乘以100即可.【详解】由题意得,这座山的高度为:米故答案为:2000【点睛】本题结合实际问题考查有理数的混合运算,解题关键是温度差里有几个0.8,属于基础题.14、【解析】
根据向量的数量积的应用进行转化即可.【详解】,与的夹角为,∴•||||cos4,则,故答案为.【点睛】本题主要考查向量长度的计算,根据向量数量积的应用是解决本题的关键.15、【解析】
根据任意角三角函数的定义,列方程求出m的值.【详解】P(m,)是角终边上的一点,∴r=;又,∴=,解得m=,,.故答案为.【点睛】本题考查了任意角三角函数的定义与应用问题,属于基础题.16、【解析】
以A为原点AB为轴建立直角坐标系,表示出MN的坐标,利用向量乘法公式得到表达式,最后计算取值范围.【详解】以A为原点AB为轴建立直角坐标系平行四边形中,=,边,的长分别为2,1设则当时,有最大值5当时,有最小值2故答案为【点睛】本题考查了向量运算和向量乘法的最大最小值,通过建立直角坐标系的方法简化了技巧,是解决向量复杂问题的常用方法.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)【解析】
(1)当m>﹣2时,f(x)≥m;即(m+1)x2﹣mx+m﹣1≥m,因式分解,对m进行讨论,可得解集;(2)转化为x∈[﹣1,1]恒成立,分离参数,利用基本不等式求最值求解m的取值范围.【详解】(1)当时,;即.可得:.∵①当时,即.不等式的解集为②当时,.∵,∴不等式的解集为③当时,.∵,∴不等式的解集为综上:,不等式的解集为;当时,不等式的解集为;当时,不等式的解集为.(2)由题对任意,不等式恒成立.即.∵时,恒成立.可得:.设,.则.可得:∵,当且仅当是取等号.∴,当且仅当是取等号.故得m的取值范围.【点睛】本题主要考查了一元二次不等式的解法和讨论思想的应用,同时考查了分析求解的能力和计算能力,恒成立问题的转化,属于中档题.18、(1);(2).【解析】
(1)对等式进行平方运算,根据平面向量的模和数量积的坐标表示公式,结合两角差的余弦公式直接求解即可;(2)由(1)可以结合同角的三角函数关系式求出的值,再由同角三角函数关系式结合的值求出的值,最后利用两角和的正弦公式求出的值即可.【详解】(1);(2)因为,所以,而,所以,因为,,所以.因此有.【点睛】本题考查了已知平面向量的模求参数问题,考查了平面向量数量积的坐标表示公式,考查了两角差的余弦公式,考查了两角和的正弦公式,考查了同角的三角函数关系式的应用,考查了数学运算能力.19、(1)∠A=(2)AC边上的高为【解析】分析:(1)先根据平方关系求,再根据正弦定理求,即得;(2)根据三角形面积公式两种表示形式列方程,再利用诱导公式以及两角和正弦公式求,解得边上的高.详解:解:(1)在△ABC中,∵cosB=–,∴B∈(,π),∴sinB=.由正弦定理得=,∴sinA=.∵B∈(,π),∴A∈(0,),∴∠A=.(2)在△ABC中,∵sinC=sin(A+B)=sinAcosB+sinBcosA==.如图所示,在△ABC中,∵sinC=,∴h==,∴AC边上的高为.点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.20、(1)(2)(3)【解析】
把两个骰子分别记为红色和黑色,则问题中含有基本事件个数,记事件A表示“二者点数相同”,利用列举法求出事件A中包含6个基本事件,由此能求出二者点数相同的概率.记事件B表示“两数之积为奇数”,利用列举法求出事件B中含有9个基本事件,由此能求出两数之积为奇数的概率.记事件C表示“二者的数字之和不超过5”,利用列举法求出事件C中包含的基本事件有10个,由此能求出二者的数字之和不超过5的概率.【详解】解:把两个骰子分别记为红色和黑色,则问题中含有基本事件个数,记事件A表示“二者点数相同”,则事件A中包含6个基本事件,分别为:,,,,,,二者点数相同的概率.记事件B表示“两数之积为奇数”,则事件B中含有9个基本事件,分别为:,,,,,,,,,两数之积为奇数的概率.记事件C表示“二者的数字之和不超过5”,由事件C中包含的基本事件有10个,分别为:,,,,,,,,,,二者的数字之和不超过5的概率.【点睛】本题考查概率的求法,考查古典概型、列举法等基础知识,考查运算求解能力,是基础题.21、(1),(2)递增区间为,(3)【解析】
(1)根据向量的数量积坐标运算,以及模长的求解公式,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 东莞中专试题及答案大全
- 安全测试题及答案补答
- 商业领域中数字孪生驱动的智能制造策略研究
- 教育培训行业的数字化转型营销趋势分析
- 教学软件及设备的选择和实现技术介绍
- 教育技术开启数字化教学新篇章
- 2025年金属三层文件篮项目市场调查研究报告
- 2025年酸豆角项目市场调查研究报告
- 2025年道轨式切坯机项目市场调查研究报告
- 2025年迷宫棋玩具项目市场调查研究报告
- DB35∕T 516-2018 益胶泥通用技术条件
- 每日工作流程物业保安主管经理
- 供应商应付账款管理表
- STEM教学设计与实施PPT完整全套教学课件
- 学大教育:上海瑞聚实业有限公司设备年市场租金价值评估项目评估报告
- 思密达能快速治疗压疮
- 《勒俄特依 彝族古典长诗 中华大国学经典文库 》读书笔记思维导图
- 铣床操作作业指导书
- 医护人员行为规范与职业礼仪培训课件
- GA/T 830-2021尸体解剖检验室建设规范
- GB/T 15823-1995氦泄漏检验
评论
0/150
提交评论