版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省菏泽市巨野县第一中学2025届数学高一下期末监测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知锐角三角形的边长分别为1,3,,则的取值范围是()A. B. C. D.2.已知数列的通项公式是,则等于()A.70 B.28 C.20 D.83.把等差数列1,3,5,7,9,…依次分组,按第一个括号一个数,第二个括号二个数,第三个括号三个数,第四个括号一个数,…循环分为,,,,,,,…,则第11个括号内的各数之和为()A.99 B.37 C.135 D.804.若抛物线上一点到焦点的距离是该点到轴距离的3倍,则()A. B. C. D.75.将正整数排列如下:则图中数2020出现在()A.第64行第3列 B.第64行4列 C.第65行3列 D.第65行4列6.将函数的图象向右平移个单位长度,所得图象对应的函数解析式是A. B. C. D.7.光线自点M(2,3)射到N(1,0)后被x轴反射,则反射光线所在的直线方程为()A. B.C. D.8.两个正实数满足,则满足,恒成立的取值范围()A. B. C. D.9.若,下列不等式一定成立的是()A. B. C. D.10.某程序框图如图所示,则该程序运行后输出的值是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知是等差数列,公差不为零,若,,成等比数列,且,则________12.从甲、乙、丙等5名候选学生中选2名作为青年志愿者,则甲、乙、丙中有2个被选中的概率为________.13.函数f(x)=log2(x+1)的定义域为_____.14.已知函数,若,且,则__________.15.已知圆Ω过点A(5,1),B(5,3),C(﹣1,1),则圆Ω的圆心到直线l:x﹣2y+1=0的距离为_____.16.数列满足,,则___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设函数,且(1)求的值;(2)试判断在上的单调性,并用定义加以证明;(3)若求值域;18.设数列的前n项和为,已知.(Ⅰ)求通项;(Ⅱ)设,求数列的前n项和.19.在正△ABC中,AB=2,(t∈R).(1)试用,表示:(2)当•取得最小值时,求t的值.20.若数列满足:存在正整数,对任意的,使得成立,则称为阶稳增数列.(1)若由正整数构成的数列为阶稳增数列,且对任意,数列中恰有个,求的值;(2)设等比数列为阶稳增数列且首项大于,试求该数列公比的取值范围;(3)在(1)的条件下,令数列(其中,常数为正实数),设为数列的前项和.若已知数列极限存在,试求实数的取值范围,并求出该极限值.21.已知向量,满足,,.(1)求向量,所成的角的大小;(2)若,求实数的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
根据大边对大角定理知边长为所对的角不是最大角,只需对其他两条边所对的利用余弦定理,即这两角的余弦值为正,可求出的取值范围.【详解】由题意知,边长为所对的角不是最大角,则边长为或所对的角为最大角,只需这两个角为锐角即可,则这两个角的余弦值为正数,于此得到,由于,解得,故选C.【点睛】本题考查余弦定理的应用,在考查三角形是锐角三角形、直角三角形还是钝角三角形,一般由最大角来决定,并利用余弦定理结合余弦值的符号来进行转化,其关系如下:为锐角;为直角;为钝角.2、C【解析】
因为,所以,所以=20.故选C.3、D【解析】
由已知分析,寻找数据的规律,找出第11个括号的所有数据即可.【详解】因为每三个括号,总共有数据1+2+3=6个,相当于一个“周期”,故第11个括号,在第4个周期的第二个括号;则第11个括号中有两个数,其数值为首项为1,公差为2的等差数列数列中的第20项(6,第21项的和,即.故选:D.【点睛】本题考查数列新定义问题,涉及归纳总结,属中档题.4、A【解析】由题意,焦点坐标,所以,解得,故选A。5、B【解析】
根据题意,构造数列,利用数列求和推出的位置.【详解】根据已知,第行有个数,设数列为行数的数列,则,即第行有个数,第行有个数,……,第行有个数,所以,第行到第行数的总个数,当时,数的总个数,所以,为时的数,即行的数为:,,,,……,所以,为行第列.故选:B.【点睛】本题考查数列的应用,构造数列,利用数列知识求解很关键,属于中档题.6、B【解析】
利用三角函数图像平移原则,结合诱导公式,即可求解.【详解】函数的图象向右平移个单位长度得到.故选B.【点睛】本题考查三角图像变换,诱导公式,熟记变换原则,准确计算是关键,是基础题.7、B【解析】试题分析:点关于轴的对称点,则反射光线即在直线上,由,∴,故选B.考点:直线方程的几种形式.8、B【解析】
由基本不等式和“1”的代换,可得的最小值,再由不等式恒成立思想可得小于等于的最小值,解不等式即得m的范围。【详解】由,,可得,当且仅当上式取得等号,若恒成立,则有,解得.故选:B【点睛】本题考查利用基本不等式求恒成立问题中的参数取值范围,是常考题型。9、D【解析】
通过反例、作差法、不等式的性质可依次判断各个选项即可.【详解】若,,则,错误;,则,错误;,,则,错误;,则等价于,成立,正确.本题正确选项:【点睛】本题考查不等式的性质,属于基础题.10、D【解析】
由题意首先确定流程图的功能,然后结合三角函数的性质求解所要输出的结果即开即可.【详解】根据程序框图知,该算法的目标是计算和式:.又因为,注意到,故:.故选:D.【点睛】识别、运行程序框图和完善程序框图的思路:(1)要明确程序框图的顺序结构、条件结构和循环结构.(2)要识别、运行程序框图,理解框图所解决的实际问题.(3)按照题目的要求完成解答并验证.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
根据题设条件,得到方程组,求得,即可得到答案.【详解】由题意,数列是等差数列,满足,,成等比数列,且,可得,即且,解得,所以.故答案为:.【点睛】本题主要考查了等差数列的通项公式,以及等比中项的应用,其中解答中熟练利用等差数列的通项公式和等比中项公式,列出方程组求解是解答的关键,着重考查了推理与运算能力,属于基础题.12、【解析】因为从5名候选学生中任选2名学生的方法共有10种,而甲、乙、丙中有2个被选中的方法有3种,所以甲、乙、丙中有2个被选中的概率为.13、{x|x>﹣1}【解析】
利用对数的真数大于,即可得解.【详解】函数的定义域为:,解得:,故答案为:.【点睛】本题主要考查对数函数定义域,考查学生对对数函数定义的理解,是基础题.14、2【解析】不妨设a>1,
则令f(x)=|loga|x-1||=b>0,
则loga|x-1|=b或loga|x-1|=-b;
故x1=-ab+1,x2=-a-b+1,x3=a-b+1,x4=ab+1,
故故答案为2点睛:本题考查了绝对值方程及对数运算的应用,同时考查了指数的运算,注意计算的准确性.15、【解析】
求得线段和线段的垂直平分线,求这两条垂直平分线的交点即求得圆的圆心,在求的圆心到直线的距离.【详解】∵A(5,1),B(5,3),C(﹣1,1),∴AB的中点坐标为(5,2),则AB的垂直平分线方程为y=2;BC的中点坐标为(2,2),,则BC的垂直平分线方程为y﹣2=﹣3(x﹣2),即3x+y﹣8=1.联立,得.∴圆Ω的圆心为Ω(2,2),则圆Ω的圆心到直线l:x﹣2y+1=1的距离为d.故答案为:【点睛】本小题主要考查根据圆上点的坐标求圆心坐标,考查点到直线的距离公式,属于基础题.16、2【解析】
利用递推公式求解即可.【详解】由题得.故答案为2【点睛】本题主要考查利用递推公式求数列中的项,意在考查学生对这些知识的理解掌握水平,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)m=1;(2)单调递减,证明见解析;(3).【解析】
(1)由由(1)即可解得;(2)利用减函数的定义可以判断、证明;(3)利用函数的单调性求函数的值域.【详解】(1)由(1),得,.(2)在上单调递减.证明:由(1)知,,设,则.因为,所以,,所以,即,所以函数在上单调递减.(3)由于函数在上单调递减.所以.所以函数的值域为.【点睛】本题考查函数的单调性及其应用,定义证明函数单调性的常用方法,意在考查学生对这些知识的理解掌握水平,属于基础题.18、(Ⅰ);(Ⅱ).【解析】试题分析:(Ⅰ)当时,根据,构造,利用,两式相减得到,然后验证,得到数列的通项公式;(Ⅱ)由上一问可知.根据零点分和讨论去绝对值,利用分组转化求数列的和.试题解析:(Ⅰ)因为,所以当时,,两式相减得:当时,,因为,得到,解得,,所以数列是首项,公比为5的等比数列,则;(Ⅱ)由题意知,,易知当时,;时,所以当时,,当时,,所以,,……当时,又因为不满足满足上式,所以.考点:1.已知求;2.分组转化法求和.【方法点睛】本题考查了数列求和,一般数列求和方法(1)分组转化法,一般适用于等差数列加等比数列,(2)裂项相消法求和,,等的形式,(3)错位相减法求和,一般适用于等差数列乘以等比数列,(4)倒序相加法求和,一般距首末两项的和是一个常数,这样可以正着写和和倒着写和,两式两式相加除以2得到数列求和,(5)或是具有某些规律求和,(6)本题考查了等差数列绝对值求和,需讨论零点后分两段求和.19、(1)(2)【解析】
(1)根据即可得出,从而解得;(2)由(1)得,根据得,从而进行数量积的运算得出,配方即可得出当时,取最小值.【详解】(1)∵;∴;∴;(2)∵△ABC是正三角形,且AB=2;∴;∵;∴;∴∴时,取最小值.【点睛】本题考查向量减法、加法的几何意义,向量的数乘运算,以及向量的数量积运算及计算公式,配方法解决二次函数问题的方法,属于基础题.20、(1);(2);(3).【解析】
(1)设,由题意得出,求出正整数的值即可;(2)根据定义可知等比数列中的奇数项构成的等比数列为阶稳增数列,偶数项构成的等比数列也为阶稳增数列,分和两种情况讨论,列出关于的不等式,解出即可;(3)求出,然后分、和三种情况讨论,求出,结合数列的极限存在,求出实数的取值范围.【详解】(1)设,由于数列为阶稳增数列,则,对任意,数列中恰有个,则数列中的项依次为:、、、、、、、、、、、、、、、、,设数列中值为的最大项数为,则,由题意可得,即,,解得,因此,;(2)由于等比数列为阶稳增数列,即对任意的,,且.所以,等比数列中的奇数项构成的等比数列为阶稳增数列,偶数项构成的等比数列也为阶稳增数列.①当时,则等比数列中每项都为正数,由可得,整理得,解得;②当时,(i)若为正奇数,可设,则,由,得,即,整理得,解得;(ii)若为正偶数时,可设,则,由,得,即,整理得,解得.所以,当时,等比数列为阶稳增数列.综上所述,实数的取值范围是;(3),由(1)知,则.①当时,,,则,此时,数列的极限不存在;②当时,,,上式下式得,所以,,则.(i)若时,则,此时数列的极限不存在;(ii)当时,,此时,数列的极限存在.综上所述,实数的取值范围是.【点睛】本题考
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年宿迁职业技术学院高职单招高职单招英语2016-2024历年频考点试题含答案解析
- 毛石基层施工方案
- 广丰煤矿施工方案
- 2025至2030年中国炉用调整器数据监测研究报告
- 直饮水施工方案
- 2025年安徽工商职业学院高职单招职业技能测试近5年常考版参考题库含答案解析
- 2025至2030年中国木构件数据监测研究报告
- 2025年安徽中医药高等专科学校高职单招职业适应性测试近5年常考版参考题库含答案解析
- 2025年宁夏职业技术学院高职单招高职单招英语2016-2024历年频考点试题含答案解析
- 2025年天津滨海职业学院高职单招高职单招英语2016-2024历年频考点试题含答案解析
- 华为HCIA-Storage H13-629考试练习题
- Q∕GDW 516-2010 500kV~1000kV 输电线路劣化悬式绝缘子检测规程
- 辽宁省抚顺五十中学2024届中考化学全真模拟试卷含解析
- 2024年湖南汽车工程职业学院单招职业技能测试题库及答案解析
- 家长心理健康教育知识讲座
- GB/T 292-2023滚动轴承角接触球轴承外形尺寸
- 2024年九省联考高考数学卷试题真题答案详解(精校打印)
- 军人结婚函调报告表
- 民用无人驾驶航空器实名制登记管理规定
- 北京地铁6号线
- 航空油料计量统计员(初级)理论考试复习题库大全-上(单选题汇总)
评论
0/150
提交评论