2025届上海市杨思中学高一数学第二学期期末质量检测试题含解析_第1页
2025届上海市杨思中学高一数学第二学期期末质量检测试题含解析_第2页
2025届上海市杨思中学高一数学第二学期期末质量检测试题含解析_第3页
2025届上海市杨思中学高一数学第二学期期末质量检测试题含解析_第4页
2025届上海市杨思中学高一数学第二学期期末质量检测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届上海市杨思中学高一数学第二学期期末质量检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知是定义在上的偶函数,且在上递增,那么一定有()A. B.C. D.2.已知为两条不同的直线,为两个不同的平面,给出下列命题:①若,,则;②若,,则;③若,,则;④若,,,则.其中正确的命题是()A.②③ B.①③ C.②④ D.①④3.在ΔABC中,如果A=45∘,c=6,A.无解 B.一解 C.两解 D.无穷多解4.函数的定义域是(

)A. B. C. D.5.若,则三个数的大小关系是()A. B.C. D.6.设a>0,b>0,若是和的等比中项,则的最小值为()A.6 B. C.8 D.97.在等差数列an中,a1+a2A.2n B.2n+1 C.2n-1 D.2n+28.正方体中,的中点为,的中点为,则异面直线与所成的角是()A. B. C. D.9.已知点,直线方程为,且直线与线段相交,求直线的斜率k的取值范围为()A.或 B.或C. D.10.在中,,则一定是()A.等腰三角形 B.直角三角形C.等边三角形 D.等腰直角三角形二、填空题:本大题共6小题,每小题5分,共30分。11.已知数列的通项公式,则_______.12.终边在轴上的角的集合是_____________________.13.若数列的前项和,满足,则______.14.计算:________15.等差数列中,,则其前12项之和的值为______16.正六棱柱各棱长均为,则一动点从出发沿表面移动到时的最短路程为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知且,比较与的大小.18.已知点是函数的图象上一点,等比数列的前n项和为,数列的首项为c,且前n项和满足:当时,都有.(1)求c的值;(2)求证:为等差数列,并求出.(3)若数列前n项和为,是否存在实数m,使得对于任意的都有,若存在,求出m的取值范围,若不存在,说明理由.19.某科研小组对冬季昼夜温差大小与某反季节作物种子发芽多少之间的关系进行分析,分别记录了每天昼夜温差和每100颗种子的发芽数,其中5天的数据如下,该小组的研究方案是:先从这5组数据中选取3组求线性回归方程,再用方程对其余的2组数据进行检验.日期第1天第2天第3天第4天第5天温度(℃)101113128发芽数(颗)2326322616(1)求余下的2组数据恰好是不相邻2天数据的概率;(2)若选取的是第2、3、4天的数据,求关于的线性回归方程;(3)若由线性回归方程得到的估计数据与2组检验数据的误差均不超过1颗,则认为得到的线性回归方程是可靠的,请问(2)中所得的线性回归方程是否可靠?(参考公式;线性回归方程中系数计算公式:,,其中、表示样本的平均值)20.已知函数的最小正周期为.(1)求的值和函数的值域;(2)求函数的单调递增区间及其图像的对称轴方程.21.已知函数,.(1)求函数的值域;(2)若恒成立,求m的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

根据题意,结合,可知,再利用偶函数的性质即可得出结论.【详解】是定义在上的偶函数,,在上递增,,即,故选:D.【点睛】本题考查函数奇偶性与单调性的简单应用,判断出是解题关键.2、B【解析】

利用空间中线面平行、线面垂直、面面平行、面面垂直的判定与性质即可作答.【详解】垂直于同一条直线的两个平面互相平行,故①对;平行于同一条直线的两个平面相交或平行,故②错;若,,,则或与为异面直线或与为相交直线,故④错;若,则存在过直线的平面,平面交平面于直线,,又因为,所以,又因为平面,所以,故③对.故选B.【点睛】本题主要考查空间中,直线与平面平行或垂直的判定与性质,以及平面与平面平行或垂直的判定与性质,属于基础题型.3、C【解析】

计算出csinA的值,然后比较a、csin【详解】由题意得csinA=6×2【点睛】本题考查三角形解的个数的判断,解题时要熟悉三角形解的个数的判断条件,考查分析问题和解决问题的能力,属于中等题.4、B【解析】

根据函数f(x)的解析式,列出使解析式有意义的不等式组,求出解集即可.【详解】∵函数f(x)=+lg(3x+1),∴;解得﹣<x<1,∴函数f(x)的定义域是(﹣,1).故选B.【点睛】本题考查了求函数定义域的应用问题,解题的关键是列出使函数解析式有意义的不等式组,是基础题目.5、A【解析】

根据对数函数以及指数函数的性质比较,b,c的大小即可.【详解】=log50.2<0,b=20.5>1,0<c=0.52<1,则,故选A.【点睛】本题考查了对数函数以及指数函数的性质,是一道基础题.6、D【解析】

试题分析:由题意a>0,b>0,且是和的等比中项,即,则,当且仅当时,即时取等号.考点:重要不等式,等比中项7、C【解析】

直接利用等差数列公式解方程组得到答案.【详解】aaa1故答案选C【点睛】本题考查了等差数列的通项公式,属于基础题型.8、D【解析】

首先根据得到异面直线与所成的角就是直线与所成角,再根据即可求出答案.【详解】由图知:取的中点,连接.因为,所以异面直线与所成的角就是直线与所成角.因为,所以,.因为,所以,.所以异面直线与所成的角为.故选:D【点睛】本题主要考查异面直线所成角,平移找角为解题的关键,属于简单题.9、A【解析】

先求出线段的方程,得出,在直线的方程中得到,将代入的表达式,利用不等式的性质求出的取值范围.【详解】易求得线段的方程为,得,由直线的方程得,当时,,此时,;当时,,此时,.因此,实数的取值范围是或,故选A.【点睛】本题考查斜率取值范围的计算,可以利用数形结合思想,观察倾斜角的变化得出斜率的取值范围,也可以利用参变量分离,得出斜率的表达式,利用不等式的性质得出斜率的取值范围,考查计算能力,属于中等题.10、B【解析】

利用余弦定理、三角形面积公式、正弦定理,求得和,通过等式消去,求得的两个值,再判断三角形的形状.【详解】,又,,,又,,又,,,,,,解得:或,一定是直角三角形.【点睛】本题在求解过程中对存在两组解,要注意解答的完整性与严谨性,综合两种情况,再对的形状作出判断.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

本题考查的是数列求和,关键是构造新数列,求和时先考虑比较特殊的前两项,剩余7项按照等差数列求和即可.【详解】令,则所求式子为的前9项和.其中,,从第三项起,是一个以1为首项,4为公差的等差数列,,故答案为1.【点睛】本题考查的是数列求和,关键在于把所求式子转换成为等差数列的前项和,另外,带有绝对值的数列在求和时要注意里面的特殊项.12、【解析】

由于终边在y轴的非负半轴上的角的集合为而终边在y轴的非正半轴上的角的集合为,终边在轴上的角的集合是,所以,故答案为.13、【解析】

令,得出,令,由可计算出在时的表达式,然后就是否符合进行检验,由此可得出.【详解】当时,;当时,则.也适合.综上所述,.故答案为:.【点睛】本题考查利用求,一般利用来计算,但需要对进行检验,考查计算能力,属于基础题.14、【解析】

用正弦、正切的诱导公式化简求值即可.【详解】.【点睛】本题考查了正弦、正切的诱导公式,考查了特殊角的正弦值和正切值.15、【解析】

利用等差数列的通项公式、前n项和公式直接求解.【详解】∵等差数列{an}中,a3+a10=25,∴其前12项之和S126(a3+a10)=6×25=1.故答案为:1.【点睛】本题考查等差数列的前n项和的公式,考查等差数列的性质的应用,考查运算求解能力,是基础题.16、【解析】

根据可能走的路径,将所给的正六棱柱展开,利用平面几何知识求解比较.【详解】将所给的正六棱柱下图(2)表面按图(1)展开.,,,故从A沿正侧面和上表面到D1的路程最短为故答案为:.【点睛】本题主要考查了空间几何体展形图的应用,还考查了空间想象和运算求解的能力,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、详见解析【解析】

将两式作差可得,由、和可得大小关系.【详解】当且时,当时,当时,综上所述:当时,;当时,;当时,【点睛】本题考查作差法比较大小的问题,关键是能够根据所得的差进行分类讨论;易错点是忽略差等于零,即两式相等的情况.18、(1)1;(2)证明见解析,;(3)存在,.【解析】

(1)根据题意可得,再根据等比数列的性质即可求出c(2)根据题意可得,然后求出和(3)利用裂项求和法求出前n项和为,然后就可得出m的范围【详解】(1)因为所以,即即前n项和为,所以,因为是等比数列所以有,即解得(2)且数列构成一个首项为1,公差为1的等差数列所以,即

所以(3)因为对于任意的都有所以【点睛】常见的数列求和方法有公式法即等差等比数列的求和公式、分组求和法、裂项相消法、错位相减法.19、(1);(2);(3)线性回归方程是可靠的.【解析】

(1)用列举法求出基本事件数,计算所求的概率值;(2)由已知数据求得与,则线性回归方程可求;(3)利用回归方程计算与8时的值,再由已知数据作差取绝对值,与1比较大小得结论.【详解】解:(1)设“余下的2组数据恰好是不相邻2天数据为事件”,从5组数据中选取3组数据,余下的2组数据共10种情况:,,,,,,,,,.其中事件的有6种,;(2)由数据求得,,且,.代入公式得:,.线性回归方程为:;(3)当时,,,当时,,.故得到的线性回归方程是可靠的.【点睛】本题考查了线性回归方程的求法与应用问题,考查古典概型的概率计算问题,属于中档题.20、(1),值域为;(2)单调递增区间为,对称轴方程为.【解析】

(1)利用二倍角公式降幂,然后化为的形式,由周期公式求出,同时求得值域;(2)直接利用复合函数的单调性求得增区间,再由求得对称轴方程.【详解】(1),由,得,,则函数的值域为;(2)由,解得,函数的单调递增区间为,令,解得,函数的对称轴方程为.【点睛】本题考查了二倍角公式以及三角函数的图像与性质,掌握正弦函数的性质才是解题的关键,考查了基本知识,属于基础题.21、(1);(2)或.【解析】

(1)根据用配方法

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论