




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省六安市卓越县中联盟2025届数学高一下期末联考模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.变量满足,目标函数,则的最小值是()A. B.0 C.1 D.-12.如图所示,在一个长、宽、高分别为2、3、4的密封的长方体装置中放一个单位正方体礼盒,现以点D为坐标原点,、、分别为x、y、z轴建立空间直角坐标系,则正确的是()A.的坐标为 B.的坐标为C.的长为 D.的长为3.已知为等比数列的前项和,,,则A. B. C. D.114.已知实数满足,则的取值范围是()A. B. C. D.5.在平面直角坐标系中,已知四边形是平行四边形,,,则()A. B. C. D.6.若且,则下列不等式成立的是()A. B. C. D.7.已知等差数列的公差为2,若成等比数列,则()A. B. C. D.8.等差数列中,已知,且公差,则其前项和取最小值时的的值为()A.6 B.7 C.8 D.99.数列{an}的通项公式an=,若{an}前n项和为24,则n为().A.25 B.576 C.624 D.62510.点直线与线段相交,则实数的取值范围是()A. B.或C. D.或二、填空题:本大题共6小题,每小题5分,共30分。11.光线从点射向y轴,经过y轴反射后过点,则反射光线所在的直线方程是________.12.设函数,则使得成立的的取值范围是_______________.13.在中,,,面积为,则________.14.已知,,则______.15.下列说法中:①若,满足,则的最大值为;②若,则函数的最小值为③若,满足,则的最小值为④函数的最小值为正确的有__________.(把你认为正确的序号全部写上)16.数列中,,以后各项由公式给出,则等于_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知数列的前n项和为,,.(1)证明:数列为等比数列;(2)证明:.18.(Ⅰ)已知向量,求与的夹角的余弦值;(Ⅱ)已知角终边上一点,求的值.19.如图是我国2011年至2017年生活垃圾无害化处理量(单位:亿吨)的折线图(年份代码1-7分别对应年份)(1)建立关于的回归方程(系数精确到0.001);(2)预测2020年我国生活垃圾无害化处理量.附注:参考数据:,,回归方程中斜率和截距的最小二乘估计公式分别为:,.20.已知直线与平行.(1)求实数的值:(2)设直线过点,它被直线,所截的线段的中点在直线上,求的方程.21.某公司为了变废为宝,节约资源,新上了一个从生活垃圾中提炼生物柴油的项目.经测算该项目月处理成本(元)与月处理量(吨)之间的函数关系可以近似地表示为:,且每处理一吨生活垃圾,可得到能利用的生物柴油价值为元,若该项目不获利,政府将给予补贴.(1)当时,判断该项目能否获利?如果获利,求出最大利润;如果不获利,则政府每月至少需要补贴多少元才能使该项目不亏损?(2)该项目每月处理量为多少吨时,才能使每吨的平均处理成本最低?
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
先画出满足条件的平面区域,将变形为:,平移直线得直线过点时,取得最小值,求出即可.【详解】解:画出满足条件的平面区域,如图示:
由得:,
平移直线,显然直线过点时,最小,
由,解得:
∴最小值,
故选:D.【点睛】本题考查了简单的线性规划问题,考查数形结合思想,是一道基础题.2、D【解析】
根据坐标系写出各点的坐标分析即可.【详解】由所建坐标系可得:,,,.故选:D.【点睛】本题考查空间直角坐标系的应用,考查空间中距离的求法,考查计算能力,属于基础题.3、C【解析】
由题意易得数列的公比代入求和公式计算可得.【详解】设等比数列公比为q,,则,解得,,故选:C.【点睛】本题考查等比数列的求和公式和通项公式,求出数列的公比是解决问题的关键,属基础题.4、D【解析】
作出不等式组对应的平面区域,利用目标函数的几何意义,结合数形结合即可得到结论.【详解】由线性约束条件作出可行域,如下图三角形阴影部分区域(含边界),令,直线:,平移直线,当过点时取得最大值,当过点时取得最小值,所以的取值范围是.【点睛】本题主要考查线性规划的应用.本题先正确的作出不等式组表示的平面区域,再结合目标函数的几何意义进行解答是解决本题的关键.5、D【解析】因为四边形是平行四边形,所以,所以,故选D.考点:1、平面向量的加法运算;2、平面向量数量积的坐标运算.6、D【解析】
利用作差法对每一个选项逐一判断分析.【详解】选项A,所以a≥b,所以该选项错误;选项B,,符合不能确定,所以该选项错误;选项C,,符合不能确定,所以该选项错误;选项D,,所以,所以该选项正确.故选D【点睛】本题主要考查实数大小的比较,意在考查学生对该知识的理解掌握水平和分析推理能力.7、B【解析】
通过成等比数列,可以列出一个等式,根据等差数列的性质,可以把该等式变成关于的方程,解这个方程即可.【详解】因为成等比数列,所以有,又因为是公差为2的等差数列,所以有,故本题选B.【点睛】本题考查了等比中项的性质,考查了等差数列的性质,考查了数学运算能力.8、C【解析】因为等差数列中,,所以,有,所以当时前项和取最小值.故选C.9、C【解析】an==-(),前n项和Sn=-[(1-)+(-)]+…+()]=-1=24,故n=624.故选C.10、C【解析】
直线经过定点,斜率为,数形结合利用直线的斜率公式,求得实数的取值范围,得到答案.【详解】如图所示,直线经过定点,斜率为,当直线经过点时,则,当直线经过点时,则,所以实数的取值范围,故选C.【点睛】本题主要考查了直线过定点问题,以及直线的斜率公式的应用,着重考查了数形结合法,以及推理与运算能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、(或写成)【解析】
光线从点射向y轴,即反射光线反向延长线经过关于y轴的对称点,则反射光线通过和两个点,设直线方程求解即可。【详解】由题意可知,所求直线方程经过点关于y轴的对称点为,则所求直线方程为,即.【点睛】此题的关键点在于物理学上光线的反射光线和入射光线关于镜面对称,属于基础题目。12、【解析】
根据函数的表达式判断出函数为偶函数,判断函数在的单调性为递增,根据偶函数的对称性可得,解绝对值不等式即可.【详解】解:,定义域为,因为,所以函数为偶函数.当时,易知函数在为增函数,根据偶函数的性质可知:由可知,所以,解得:或.故答案为:.【点睛】本题考查偶函数的性质和利用偶函数对称性的特点解决问题,属于基础题.13、【解析】
由已知利用三角形面积公式可求c,进而利用余弦定理可求a的值,根据正弦定理即可计算求解.【详解】,,面积为,解得,由余弦定理可得:,所以,故答案为:【点睛】本题主要考查了三角形面积公式,余弦定理,正弦定理在解三角形中的应用,考查了计算能力和转化思想,属于基础题.14、【解析】
由,然后利用两角差的正切公式可计算出的值.【详解】.故答案为:.【点睛】本题考查利用两角差的正切公式求值,解题的关键就是弄清所求角与已知角之间的关系,考查计算能力,属于基础题.15、③④【解析】
①令,得出,再利用双勾函数的单调性判断该命题的正误;②将函数解析式变形为,利用基本不等式判断该命题的正误;③由得出,得出,利用基本不等式可判断该命题的正误;④将代数式与代数式相乘,展开后利用基本不等式可求出的最小值,进而判断出该命题的正误。【详解】①由得,则,则,设,则,则,则上减函数,则上为增函数,则时,取得最小值,当时,,故的最大值为,错误;②若,则函数,则,即函数的最大值为,无最小值,故错误;③若,满足,则,则,由,得,则,当且仅当,即得,即时取等号,即的最小值为,故③正确;④,当且仅当,即,即时,取等号,即函数的最小值为,故④正确,故答案为:③④。【点睛】本题考查利用基本不等式来判断命题的正误,利用基本不等式需注意满足“一正、二定、三相等”这三个条件,同时注意结合双勾函数单调性来考查,属于中等题。16、【解析】
可以利用前项的积与前项的积的关系,分别求得第三项和第五项,即可求解,得到答案.【详解】由题意知,数列中,,且,则当时,;当时,,则,当时,;当时,,则,所以.【点睛】本题主要考查了数列的递推关系式的应用,其中解答中熟练的应用递推关系式是解答的关键,着重考查了推理与运算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)证明见解析【解析】
(1)将已知递推式取倒数得,,再结合等比数列的定义,即可得证;(2)由(1)得,再利用基本不等式以及放缩法和等比数列的求和公式,结合不等式的性质,即可得证.【详解】(1),,可得,即有,可得数列为公比为2,首项为2的等比数列;(2)由(1)可得,即,由基本不等式可得,,即有.【点睛】本题考查等比数列的定义和通项公式、求和公式、考查构造数列法以及放缩法的运用,考查化简运算能力和推理能力,属于中档题.18、(Ⅰ);(Ⅱ).【解析】
(Ⅰ)由已知分别求得及与,再由数量积求夹角计算结果;(Ⅱ)利用任意角的三角函数的定义求得sinα,再由三角函数的诱导公式化简求值.【详解】(Ⅰ)∵,∴,||=5,||,∴.(Ⅱ)∵P(﹣4,3)为角α终边上一点,∴,.则sin2α.【点睛】本题考查利用数量积求向量的夹角,考查任意角的三角函数的定义,训练了利用诱导公式化简求值,是基础题.19、(1)(2)亿吨【解析】
(1)由题意计算平均数与回归系数,写出回归方程,即可求得答案;(2)计算2020年对应的值以及的值,即可求得答案.【详解】(1)由折线图可得:关于的回归方程:.(2)年对应的值为当时,预测年我国生活垃圾无害化处理量为亿吨.【点睛】本题主要考查了求数据的回归直线方程和根据回归直线方程进行预测,解题关键是掌握回归直线的求法,考查了分析能力和计算能力,属于基础题.20、(1).(2)【解析】
(1)利用两直线平行的条件进行计算,需注意重合的情况。(2)求出到平行线与距离相等的直线方程为,将其与直线联立,得到直线被直线,所截的线段的中点坐标,进而求出直线的斜率,可得直线的方程。【详解】(1)∵直线与平行,∴且,即且,解得.(2)∵,直线:,:故可设到平行线与距离相等的直线方程为,则,解得:,所以到平行线与距离相等的直线方程为,即直线被直线,所截的线段的中点在上,联立,解得,∴过点∴,的方程为:,化简得:.【点睛】本题主要考查直线与直线的位置关系以及直线斜率、直线的一般方程的求解等知识,解题的关键是熟练掌握两直线平行的条件,直线的斜率公式,平行线间的距离公式,属于中档题。21、(1)不能获利,政府每月至少补贴元;(2)每月处理量为吨时,平均成本最低.【解析】
(1)利用:(生物的柴油总价值)(对应段的月处理成本)利润,根据利润的正负以及大小来判断是否需要补贴,以及补贴多少;(2)考虑:(月处理成本)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 纸的发明与文化传播教学教案:初中历史课程
- 上海华二附中高一(下)期末数学试题及答案
- 2022学年上海进才中学高一(下)期末政治试题及答案
- 2021学年上海控江中学高一(下)期中语文试题及答案
- 百年孤独的经典名句解读:文学鉴赏教学教案
- 英语现在完成时态结构与应用实例讲解教案
- 夏日海滩的回忆抒情类作文13篇
- 公交公司比赛活动方案
- 公交职工互助活动方案
- 公众号元旦活动方案
- 丝网除沫器小计算
- 制钵机的设计(机械CAD图纸)
- 《土木工程生产实习报告》
- 11分泌性中耳炎学习课程
- 明基逐鹿eHR白皮书(DOC 30页)
- 三年级下册美术课件-第15课色彩拼贴画|湘美版(共11张PPT)
- 水稻病虫统防统治工作总结
- 水在不同温度下的折射率、粘度和介电常数
- 四柱特高弟子班绝密资料——席学易
- 呼吸机基础知识最终版
- 广安市教育局文件材料归档范围及保管期限表
评论
0/150
提交评论