版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届内蒙古自治区乌海市乌达区高一数学第二学期期末质量检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,≤)的图象如下,则点的坐标是()A.(,) B.(,)C.(,) D.(,)2.已知函数在区间(1,2)上是增函数,则实数a的取值范围是()A.(0,+∞) B.(0,1) C.(0,1] D.(﹣1,0)3.某学校的A,B,C三个社团分别有学生人,人,人,若采用分层抽样的方法从三个社团中共抽取人参加某项活动,则从A社团中应抽取的学生人数为()A.2 B.4 C.5 D.64.已知向量,,则向量在向量方向上的投影为()A. B. C.-1 D.15.已知函数,若在区间内没有零点,则的取值范围是A. B. C. D.6.已知数列的通项公式是,则该数列的第五项是()A. B. C. D.7.根据如下样本数据x
3
4
5
6
7
8
y
可得到的回归方程为,则()A. B. C. D.8.已知集合A={x︱x>-2}且,则集合B可以是()A.{x︱x2>4} B.{x︱}C.{y︱} D.9.已知的内角、、的对边分别为、、,且,若,则的外接圆面积为()A. B. C. D.10.设首项为,公比为的等比数列的前项和为,则()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.异面直线,所成角为,过空间一点的直线与直线,所成角均为,若这样的直线有且只有两条,则的取值范围为___________________.12.某企业利用随机数表对生产的800个零件进行抽样测试,先将800个零件进行编号,编号分别为001,002,003,…,800从中抽取20个样本,如下提供随机数表的第行到第行:若从表中第6行第6列开始向右依次读取个数据,则得到的第个样本编号是_______.13.已知数列是等差数列,,那么使其前项和最小的是______.14.已知向量与的夹角为,且,;则__________.15.已知函数,则的取值范围是____16.在平面直角坐标系中,定义两点之间的直角距离为:现有以下命题:①若是轴上的两点,则;②已知,则为定值;③原点与直线上任意一点之间的直角距离的最小值为;④若表示两点间的距离,那么.其中真命题是__________(写出所有真命题的序号).三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.不等式(1)若不等式的解集为或,求的值(2)若不等式的解集为,求的取值范围18.已知三角形的三个顶点.(1)求BC边所在直线的方程;(2)求BC边上的高所在直线方程.19.如图,以Ox为始边作角与(),它们终边分别单位圆相交于点、,已知点的坐标为.(1)若,求角的值;(2)若·,求.20.已知各项为正数的数列满足:且.(1)证明:数列为等差数列.(2)若,证明:对一切正整数n,都有21.已知数列为等差数列,,,数列为等比数列,,公比.(1)求数列、的通项公式;(2)求数列的前n项和.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
由函数f(x)的部分图象求得A、T、ω和φ的值即可.【详解】由函数f(x)=Asin(ωx+φ)的部分图象知,A=2,T=2×(4﹣1)=6,∴ω,又x=1时,y=2,∴φ2kπ,k∈Z;∴φ2kπ,k∈Z;又0<φ,∴φ,∴点P(,).故选C.【点睛】已知函数的图象求解析式(1).(2)由函数的周期求(3)利用“五点法”中相对应的特殊点求.2、C【解析】
由题意可得在上为减函数,列出不等式组,由此解得的范围.【详解】∵函数在区间上是增函数,∴函数在上为减函数,其对称轴为,∴可得,解得.故选:C.【点睛】本题主要考查复合函数的单调性,二次函数的性质,体现了转化的数学思想,属于基础题.3、B【解析】
分层抽样每部分占比一样,通过A,B,C三个社团为,易得A中的人数。【详解】A,B,C三个社团人数比为,所以12中A有人,B有人,C有人。故选:B【点睛】此题考查分层抽样原理,根据抽样前后每部分占比一样求解即可,属于简单题目。4、A【解析】
根据投影的定义和向量的数量积求解即可.【详解】解:∵,,∴向量在向量方向上的投影,故选:A.【点睛】本题主要考查向量的数量积的定义及其坐标运算,属于基础题.5、B【解析】
函数,由,可得,,因此即可得出.【详解】函数由,可得解得,∵在区间内没有零点,
.故选B.【点睛】本题考查了三角函数的图象与性质、不等式的解法,考查了推理能力与计算能力,属于中档题.6、A【解析】
代入即可得结果.【详解】解:由已知,故选:A.【点睛】本题考查数列的项和项数之间的关系,是基础题.7、A【解析】试题分析:依据样本数据描点连线可知图像为递减且在轴上的截距大于0,所以.考点:1.散点图;2.线性回归方程;8、D【解析】
A、B={x|x>2或x<-2},
∵集合A={x|x>-2},
∴A∪B={x|x≠-2}≠A,不合题意;
B、B={x|x≥-2},
∵集合A={x|x>-2},
∴A∪B={x|x≥-2}=B,不合题意;
C、B={y|y≥-2},
∵集合A={x|x>-2},
∴A∪B={x|x≥-2}=B,不合题意;
D、若B={-1,0,1,2,3},
∵集合A={x|x>-2},
∴A∪B={x|x>-2}=A,与题意相符,
故选D.9、D【解析】
先化简得,再利用正弦定理求出外接圆的半径,即得的外接圆面积.【详解】由题得,所以,所以,所以,所以.由正弦定理得,所以的外接圆面积为.故选D【点睛】本题主要考查正弦定理余弦定理解三角形,意在考查学生对这些知识的理解掌握水平和分析推理能力.10、D【解析】Sn====3-2an.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
将直线,平移到交于点,设平移后的直线为,,如图,过作及其外角的角平分线,根据题意可以求出的取值范围.【详解】将直线,平移到交于点,设平移后的直线为,,如图,过作及其外角的角平分线,异面直线,所成角为,可知,所以,所以在方向,要使有两条,则有:,在方向,要使不存在,则有,综上所述,.故答案为:【点睛】本题考查了异面直线的所成角的有关性质,考查了空间想象能力.12、1【解析】
根据随机数表法抽样的定义进行抽取即可.【详解】第6行第6列的数开始的数为808,不合适,436,789不合适,535,577,348,994不合适,837不合适,522,535重复不合适,1合适则满足条件的6个编号为436,535,577,348,522,1,则第6个编号为1,故答案为1.【点睛】本题考查了简单随机抽样中的随机数表法,主要考查随机抽样的应用,根据定义选择满足条件的数据是解决本题的关键.本题属于基础题.13、5【解析】
根据等差数列的前n项和公式,判断开口方向,计算出对称轴,即可得出答案。【详解】因为等差数列前项和为关于的二次函数,又因为,所以其对称轴为,而,所以开口向上,因此当时最小.【点睛】本题考查等差数列前n项和公式的性质,属于基础题。14、【解析】
已知向量与的夹角为,则,已知模长和夹角代入式子即可得到结果为故答案为1.15、【解析】
分类讨论,去掉绝对值,利用函数的单调性,求得函数各段上的取值,进而得到函数的取值范围,得到答案.【详解】由题意,当时,函数,此时函数为单调递减函数,所以最大值为,此时函数的取值当时,函数,此时函数为单调递减函数,所以最大值为,最小值,所以函数的取值为当时,函数,此时函数为单调递增函数,所以最大值为,此时函数的取值,综上可知,函数的取值范围是.【点睛】本题主要考查了分段函数的值域问题,其中解答中合理分类讨论去掉绝对值,利用函数的单调性求得各段上的值域是解答的关键,着重考查了推理与运算能力,属于基础题.16、①②④【解析】
根据新定义的直角距离,结合具体选项,进行逐一分析即可.【详解】对①:因为是轴上的两点,故,则,①正确;对②:根据定义因为,故,②正确;对③:根据定义,当且仅当时,取得最小值,故③错误;对④:因为,由不等式,即可得,故④正确.综上正确的有①②④故答案为:①②④.【点睛】本题考查新定义问题,涉及同角三角函数关系,绝对值三角不等式,属综合题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】
(1)根据一元二次不等式的解和对应一元二次方程根的关系,求得的值.(2)利用一元二次不等式解集为的条件列不等式组,解不等式组求得的取值范围.【详解】(1)由于不等式的解集为或,所以,解得.(2)由于不等式的解集为,故,解得.故的取值范围是.【点睛】本小题主要考查一元二次不等式的解与对应一元二次方程根的关系,考查一元二次不等式恒成立问题的求解策略,属于基础题.18、(1)(2)【解析】
(1)由已知条件结合直线的两点式方程的求法求解即可;(2)先求出直线BC的斜率,再求出BC边上的高所在直线的斜率,然后利用直线的点斜式方程的求法求解即可.【详解】解:(1),,直线BC的方程为,即.(2),直线BC边上的高所在的直线的斜率为,又,直线BC边上的高的方程为:,即BC边上的高所在直线方程为.【点睛】本题考查了直线的两点式方程的求法,重点考查了直线的位置关系及直线的点斜式方程的求法,属基础题.19、(1)(2)【解析】
(1)由已知利用三角函数的定义可求,利用两角差的正切公式即可计算得解;(2)由已知可得,进而求出,最后利用两角和的正弦公式即可计算得解.【详解】(1)由三角函数定义得,因为,所以,因为,所以(2)·,∴∴,所以,所以【点睛】本题主要考查了同角三角函数基本关系式,两角差的正切公式,两角和的正弦公式,考查了计算能力和转化思想,属于基础题.20、(1)证明见解析.(2)证明见解析.【解析】
(1)根据所给递推公式,将式子变形,即可由等差数列定义证明数列为等差数列.(2)根据数列为等差数列,结合等差数列通项公式求法求得通项公式,并变形后令.由求得的取值范围,即可表示出,由不等式性质进行放缩,求得后,即可证明不等式成立.【详解】(1)证明:各项为正数的数列满足:则,,同取倒数可得,所以,由等差数列定义可知数列为等差数列.(2)证明:由(1)可知数列为等差数列.,则数列是以为首项,以为公差的等差数列.则,令,因为,所以,则,所以,所以,所以由不等
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度企业国有知识产权侵权赔偿合同模板
- 2025年度漫画改编舞台剧合作制作合同二零二五版协议4篇
- 二零二五版网络安全培训与应急响应合同2篇
- 2025年度商业厨房承包合同范本4篇
- 2025年度城市轨道交通沉降监测与应急预案合同4篇
- 二零二四年度医疗设备融资租赁管理协议3篇
- 2025年度新能源项目投资合作协议书
- 2025年电晶水口项目投资可行性研究分析报告
- 二零二五版跨境贸易数据保密协议翻译服务合同3篇
- 2025年内墙转项目投资可行性研究分析报告
- GB/T 45120-2024道路车辆48 V供电电压电气要求及试验
- 春节文化常识单选题100道及答案
- 24年追觅在线测评28题及答案
- 2024年全国职业院校技能大赛高职组(药学技能赛项)考试题库(含答案)
- 2024至2030年中国氢氧化钙行业市场全景调查及发展趋势分析报告
- 鱼菜共生课件
- 《陆上风电场工程概算定额》NBT 31010-2019
- 初中物理八年级下册《动能和势能》教学课件
- 心肌梗死诊疗指南
- 原油脱硫技术
- GB/T 2518-2019连续热镀锌和锌合金镀层钢板及钢带
评论
0/150
提交评论