版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届江西省宜春市数学高一下期末质量检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.等差数列{an}中,若S1=1A.2019 B.1 C.1009 D.10102.等差数列的前项和为.若,则()A. B. C. D.3.已知,,且,则在方向上的投影为()A. B. C. D.4.一个扇形的弧长与面积都是3,则这个扇形圆心角的弧度数为()A. B. C. D.5.角的终边经过点且,则的值为()A.-3 B.3 C.±3 D.56.已知的三个顶点都在一个球面上,,且该球的球心到平面的距离为2,则该球的表面积为()A. B. C. D.7.已知,则的值域为A. B. C. D.8.如果a<b<0,则下列不等式成立的是()A. B.a2<b2 C.a3<b3 D.ac2<bc29.已知点是所在平面内的一定点,是平面内一动点,若,则点的轨迹一定经过的()A.重心 B.垂心 C.内心 D.外心10.设函数是上的偶函数,且在上单调递减.若,,,则,,的大小关系为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.设数列()是等差数列,若和是方程的两根,则数列的前2019项的和________12.在数列中,,,则__________.13.命题“,”是________命题(选填“真”或“假”).14.已知数列的通项公式为,是其前项和,则_____.(结果用数字作答)15.已知x,y=R+,且满足x2y6,若xy的最大值与最小值分别为M和m,M+m=_____.16.在中,,,则角_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知等比数列的前项和为,公比,,.(1)求等比数列的通项公式;(2)设,求的前项和.18.如图所示,在三棱柱中,与都为正三角形,且平面,分别是的中点.求证:(1)平面平面;(2)平面平面.19.已知集合,数列的首项,且当时,点,数列满足.(1)试判断数列是否是等差数列,并说明理由;(2)若,求的值.20.在直三棱柱中,,,,分别是,的中点.(1)求证:平面;(2)求直线与平面所成角的正弦值.21.如图,在△ABC中,已知AB=4,AC=6,点E为AB的中点,点D、F在边BC、AC上,且,,EF交AD于点P.(Ⅰ)若∠BAC=,求与所成角的余弦值;(Ⅱ)求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
由等差数列{an}中,S1=1,S【详解】∵等差数列{an}中,S∴S即15=5+10d,解得d=1,∴S故选:D.【点睛】本题考查等差数列基本量的求法,考查等差数列的性质等基础知识,考查运算求解能力,属于基础题.2、D【解析】
根据等差数列片段和成等差数列,可得到,代入求得结果.【详解】由等差数列性质知:,,,成等差数列,即:本题正确选项:【点睛】本题考查等差数列片段和性质的应用,关键是根据片段和成等差数列得到项之间的关系,属于基础题.3、C【解析】
通过数量积计算出夹角,然后可得到投影.【详解】,,即,,在方向上的投影为,故选C.【点睛】本题主要考查向量的几何背景,建立数量积方程是解题的关键,难度不大.4、B【解析】
根据扇形的弧长与面积公式,代入已知条件即可求解.【详解】设扇形的弧长为,面积为,半径为,圆心角弧度数为由定义可得,代入解得rad故选:B【点睛】本题考查了扇形的弧长与面积公式应用,属于基础题.5、B【解析】
根据三角函数的定义建立方程关系即可.【详解】因为角的终边经过点且,所以则解得【点睛】本题主要考查三角函数的定义的应用,应注意求出的b为正值.6、C【解析】
先算出的外接圆的半径,然后根据勾股定理可得球的半径,由此即可得到本题答案.【详解】设点O为球心,因为,所以的外接圆的圆心为AC的中点M,且半径,又因为该球的球心到平面的距离为2,即,在中,,所以该球的半径为,则该球的表面积为.故选:C【点睛】本题主要考查球的表面积的相关问题.7、C【解析】
利用求函数的周期为,计算即可得到函数的值域.【详解】因为,,,因为函数的周期,所以函数的值域为,故选C.【点睛】本题考查函数的周期运算,及利用函数的周期性求函数的值域.8、C【解析】
根据a、b的范围,取特殊值带入判断即可.【详解】∵a<b<0,不妨令a=﹣2,b=﹣1,则,a2>b2所以A、B不成立,当c=0时,ac2=bc2所以D不成立,故选:C.【点睛】本题考查了不等式的性质,考查特殊值法进行排除的应用,属于基础题.9、A【解析】
设D是BC的中点,由,,知,所以点P的轨迹是射线AD,故点P的轨迹一定经过△ABC的重心.【详解】如图,设D是BC的中点,∵,,∴,即∴点P的轨迹是射线AD,∵AD是△ABC中BC边上的中线,∴点P的轨迹一定经过△ABC的重心.故选:A.【点睛】本题考查三角形五心的应用,是基础题.解题时要认真审题,仔细解答.10、B【解析】
根据偶函数的定义可变形,再直接比较的大小关系,即可利用函数的单调性得出,,的大小关系.【详解】因为函数是上的偶函数,所以,而,函数在上单调递减,所以.故选:B.【点睛】本题主要考查函数的性质的应用,涉及奇偶性,指数函数,对数函数的单调性,以及对数的运算性质的应用,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、2019【解析】
根据二次方程根与系数的关系得出,再利用等差数列下标和的性质得到,然后利用等差数列求和公式可得出答案.【详解】由二次方程根与系数的关系可得,由等差数列的性质得出,因此,等差数列的前项的和为,故答案为.【点睛】本题考查等差数列的性质与等差数列求和公式的应用,涉及二次方程根与系数的关系,解题的关键在于等差数列性质的应用,属于中等题.12、16【解析】
依次代入即可求得结果.【详解】令,则;令,则;令,则;令,则本题正确结果:【点睛】本题考查根据数列的递推公式求解数列中的项,属于基础题.13、真【解析】当时,成立,即命题“,”为真命题.14、.【解析】
由题意知,数列的偶数项成等差数列,奇数列成等比数列,然后利用等差数列和等比数列的求和公式可求出的值.【详解】由题意可得,故答案为.【点睛】本题考查奇偶分组求和,同时也考查等差数列求和以及等比数列求和,解题时要得出公差和公比,同时也要确定出对应的项数,考查运算求解能力,属于中等题.15、【解析】
设,则,可得,然后利用基本不等式得到关于的一元二次方程解方程可得的最大值和最小值,进而得到结论.【详解】∵x,y=R+,设,则,∴∴12t=(2t+2)x+(4t+1)y,∴18t≥(t+1)(4t+1)=4t2+5t+1,∴4t2﹣13t+1≤0,∴,∵xy的最大值与最小值分别为M和m,∴M,m,∴M+m.【点睛】本题考查了基本不等式的应用和一元二次不等式的解法,考查了转化思想和运算推理能力,属于中档题.16、或【解析】
本题首先可以通过解三角形面积公式得出的值,再根据三角形内角的取值范围得出角的值。【详解】由解三角形面积公式可得:即因为,所以或【点睛】在解三角形过程中,要注意求出来的角的值可能有多种情况。三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】
(1)将已知两式作差,利用等比数列的通项公式,可得公比,由等比数列的求和可得首项,进而得到所求通项公式;(2)求得bn=n,,由裂项相消求和可得答案.【详解】(1)等比数列的前项和为,公比,①,②.②﹣①,得,则,又,所以,因为,所以,所以,所以;(2),所以前项和.【点睛】裂项相消法适用于形如(其中是各项均不为零的等差数列,c为常数)的数列.裂项相消法求和,常见的有相邻两项的裂项求和,还有一类隔一项的裂项求和,如或.18、(1)见解析.(2)见解析.【解析】
(1)由分别是的中点,证得,由线面平行的判定定理,可得平面,平面,再根据面面平行的判定定理,即可证得平面平面.(2)利用线面垂直的判定定理,可得平面,再利用面面垂直的判定定理,即可得到平面平面.【详解】(1)在三棱柱中,因为分别是的中点,所以,根据线面平行的判定定理,可得平面,平面又,∴平面平面.(2)在三棱柱中,平面,所以,又,,所以平面,而平面,所以平面平面.【点睛】本题考查线面位置关系的判定与证明,熟练掌握空间中线面位置关系的定义、判定、几何特征是解答的关键,其中垂直、平行关系证明中应用转化与化归思想的常见类型:(1)证明线面、面面平行,需转化为证明线线平行;(2)证明线面垂直,需转化为证明线线垂直;(3)证明线线垂直,需转化为证明线面垂直.19、(1)是;(2).【解析】
(1)依据题意,写出递推式,由等差数列得定义即可判断;(2)求出,利用极限知识,求出,即可求得的值。【详解】(1)当时,点,所以,即由得,当时,,将代入,,故数列是以为公差的等差数列。(2)因为,所以,,由得,,,故,。【点睛】本题主要考查等差数列的定义和通项公式的运用,以及数列极限的运算。20、(1)证明见解析。(2)【解析】
(1)首先根据已知得到,再根据线面平行的判定即可得到平面.(2)首先根据线面垂直的判定证明平面,即可找到为与平面所成角,在计算其正弦值即可.【详解】(1)因为分别是,的中点,所以四边形为平行四边形,即.平面,所以平面.(2)因为,为中点,所以.平面.所以为与平面所成角.在中,,,所以,.在中,,,所以.【点睛】本题第一问考查线面平行的判定,本题第二问考查线面成角,属于中档题.21、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)以AC所在直线为x轴,过B且垂直于AC的直线于AC的直线为y轴建
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 室外给水设计规范GB50013-
- 湖北汽车工业学院《中级财务会计》2021-2022学年第一学期期末试卷
- 湖北汽车工业学院《语言学导论》2021-2022学年第一学期期末试卷
- 湖北汽车工业学院《英语交际1》2021-2022学年第一学期期末试卷
- 班团活动策划案
- 小班数学活动好玩的彩带
- 新能源车公司户籍的出租车转让出去的合同(2篇)
- 燃气隐患整改合同(2篇)
- 河道淤泥处理协议书范本
- 中班暑假安全教育活动
- 汽车底盘差速器课件
- 危重症患者护理
- 虚拟现实直播兼职主播协议
- 2025届浙江省嘉兴市重点名校高三物理第一学期期中复习检测模拟试题含解析
- 预案演练知识培训
- 第三单元 勇担社会责任(复习课件)-八年级道德与法治上册同步备课系列(统编版)
- 适用于2024年《语言学概论》课程的教案创新策略
- 2024-2025学年广东省佛山市S6高质量发展联盟高二上学期期中联考数学试卷(含答案)
- 第14课《背影》课件(共43张t)
- 仁爱版八年级英语上册-Unit-3-Topic-3-Section-A-课件(共26张PPT)
- 村庄规划服务投标方案(技术方案)
评论
0/150
提交评论