版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省青岛市即墨区重点高中2025届数学高一下期末达标检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知某几何体的三视图是如图所示的三个直角三角形,则该几何体的外接球的表面积为()A.17π B.34π C.51π D.68π2.若直线l:ax+by=1(a>0,b>0)平分圆x2+y2﹣x﹣2y=0,则的最小值为()A. B.2 C. D.3.已知、是不重合的平面,a、b、c是两两互不重合的直线,则下列命题:①;②;③.其中正确命题的个数是()A.3 B.2 C.1 D.04.已知向量,且,则()A.2 B. C. D.5.已知三角形为等边三角形,,设点满足,若,则()A. B. C. D.6.已知锐角三角形的边长分别为1,3,,则的取值范围是()A. B. C. D.7.等差数列{an}中,若S1=1A.2019 B.1 C.1009 D.10108.设是等差数列的前项和,若,则()A. B. C. D.9.若,且,,则()A. B. C. D.10.如图,飞机的航线和山顶在同一个铅垂平面内,已知飞机的高度为海拔20000m,速度为900km/h,飞行员先看到山顶的俯角为30∘,经过80s后又看到山顶的俯角为75A.5000(3+1)C.5000(3-3)二、填空题:本大题共6小题,每小题5分,共30分。11.已知,,若,则实数________.12.等比数列的公比为,其各项和,则______________.13.已知等比数列中,,,若数列满足,则数列的前项和=________.14.将一个圆锥截成圆台,已知截得的圆台的上、下底面面积之比是1:4,截去的小圆锥母线长为2,则截得的圆台的母线长为________.15.已知数列满足:,,则_____.16.已知公式,,借助这个公式,我们可以求函数的值域,则该函数的值域是______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知向量是夹角为的单位向量,,(1)求;(2)当m为何值时,与平行?18.如图,在平面四边形中,已知,,在上取点,使得,连接,若,。(1)求的值;(2)求的长。19.已知△ABC内角A,B,C的对边分别是a,b,c,且.(Ⅰ)求A;(Ⅱ)若,求△ABC面积的最大值.20.设函数,其中,.(1)求的周期及单调递减区间;(2)若关于的不等式在上有解,求实数的取值范围.21.已知△ABC的顶点A4,3,AB边上的高所在直线为x-y-3=0,D为AC中点,且BD所在直线方程为3x+y-7=0(1)求顶点B的坐标;(2)求BC边所在的直线方程。
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
由三视图还原出原几何体,得几何体的结构(特别是垂直关系),从而确定其外接球球心位置,得球半径.【详解】由三视图知原几何体是三棱锥,如图,平面,平面.由这两个线面垂直,得,因此的中点到四顶点的距离相等,即为外接球球心.由三视图得,,∴.故选:B.【点睛】本题考查三棱锥外接球表面积,考查三视图.解题关键是由三视图还原出原几何体,确定几何体的结构,找到外接球球心.2、C【解析】
求得圆心,代入直线的方程,然后利用基本不等式求得的最小值.【详解】圆的圆心为,由于直线平分圆,故圆心在直线上,即,所以,当且仅当时等号成立.故选:C【点睛】本小题主要考查直线和圆的位置关系,考查利用基本不等式求最小值.3、C【解析】
由面面垂直的判定定理,可得①正确;利用列举所有可能,即可判断②③错误.【详解】①由面面垂直的判定定理,∵,a⊂β,∴α⊥β,故正确;
②,则平行,相交,异面都有可能,故不正确;
③,则与α平行,相交都有可能,故不正确.
故选:C.【点睛】本题主要考查线面关系的判断,考查的空间想象能力,属于基础题.判断线面关系问题首先要熟练掌握有关定理、推论,其次可以利用特殊位置排除错误结论.4、B【解析】
根据向量平行得到,再利用和差公式计算得到答案.【详解】向量,且,则..故选:.【点睛】本题考查了向量平行求参数,和差公式,意在考查学生的综合应用能力.5、D【解析】
用三角形的三边表示出,再根据已知的边的关系可得到关于的方程,解方程即得。【详解】由题得,,,整理得,化简得,解得.故选:D【点睛】本题考查平面向量的线性运算及平面向量基本定理,是常考题型。6、B【解析】
根据大边对大角定理知边长为所对的角不是最大角,只需对其他两条边所对的利用余弦定理,即这两角的余弦值为正,可求出的取值范围.【详解】由题意知,边长为所对的角不是最大角,则边长为或所对的角为最大角,只需这两个角为锐角即可,则这两个角的余弦值为正数,于此得到,由于,解得,故选C.【点睛】本题考查余弦定理的应用,在考查三角形是锐角三角形、直角三角形还是钝角三角形,一般由最大角来决定,并利用余弦定理结合余弦值的符号来进行转化,其关系如下:为锐角;为直角;为钝角.7、D【解析】
由等差数列{an}中,S1=1,S【详解】∵等差数列{an}中,S∴S即15=5+10d,解得d=1,∴S故选:D.【点睛】本题考查等差数列基本量的求法,考查等差数列的性质等基础知识,考查运算求解能力,属于基础题.8、D【解析】
根据等差数列片断和的性质得出、、、成等差数列,并将和都用表示,可得出的值.【详解】根据等差数列的性质,若数列为等差数列,则也成等差数列;又,则数列是以为首项,以为公差的等差数列,则,故选D.【点睛】本题考查等差数列片断和的性质,再利用片断和的性质时,要注意下标之间的倍数关系,结合性质进行求解,考查运算求解能力,属于中等题.9、B【解析】
利用两角和差的正弦公式将β=α-(α﹣β)进行转化求解即可.【详解】β=α-(α﹣β),∵<α,<β,β<,∴α,∵sin()0,∴<0,则cos(),∵sinα,∴cosα,则sinβ=sin[α-(α﹣β)]=sinαcos(α﹣β)-cosαsin(α﹣β)(),故选B【点睛】本题主要考查利用两角和差的正弦公式,同角三角函数基本关系,将β=α-(α﹣β)进行转化是解决本题的关键,是基础题10、C【解析】分析:先求AB的长,在△ABC中,可求BC的长,进而由于CD⊥AD,所以CD=BCsin∠CBD,故可得山顶的海拔高度.详解:如图,∠A=30°,∠ACB=45°,
AB=900×80×13600∴在△ABC中,BC=102∵CD⊥AD,=102sin30点睛:本题以实际问题为载体,考查正弦定理的运用,关键是理解俯角的概念,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、2或【解析】
根据向量平行的充要条件代入即可得解.【详解】由有:,解得或.故答案为:2或.【点睛】本题考查了向量平行的应用,属于基础题.12、【解析】
利用等比数列各项和公式可得出关于的方程,解出即可.【详解】由于等比数列的公比为,其各项和,可得,解得.故答案为:.【点睛】本题考查等比数列中基本量的计算,利用等比数列各项和公式列等式是关键,考查计算能力,属于基础题.13、【解析】试题分析:根据题意,由于等比数列中,,,则可知公比为,那么可知等比数列中,,,故可知,那么可知数列的前项和=1=,故可知答案为.考点:等比数列点评:主要是考查了等比数列的通项公式以及数列的求和的运用,属于基础题.14、2【解析】
由截得圆台上,下底面积之比可得上,下底面半径之比,再根据小圆锥的母线即可得圆台母线.【详解】设截得的圆台的母线长为.因为截得的圆台的上、下底面面积之比是1:4,所以截得的圆台的上、下底面半径之比是1:2.因为截去的小圆锥母线长为2,所以,解得.【点睛】本题考查求圆台的母线,属于基础题.15、【解析】
从开始,直接代入公式计算,可得的值.【详解】解:由题意得:,,,,故答案为:.【点睛】本题主要考查数列的递推公式及数列的性质,相对简单.16、【解析】
根据题意,可令,结合,再进行整体代换即可求解【详解】令,则,,,则,,,则函数值域为故答案为:【点睛】本题考查3倍角公式的使用,函数的转化思想,属于中档题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)1;(2)﹣6【解析】
(1)利用单位向量的定义,直接运算即可;(2)利用,有,得出,然后列方程求解即可【详解】解:(1);(2)当,则存在实数使,所以不共线,得,【点睛】本题考查向量平行的定义,注意列方程运算即可,属于简单题18、(1);(2).【解析】试题分析:(1)在中,直接由正弦定理求出;(2)在中,,,可求出,在中,直接由余弦定理可求得.试题解析:(1)在中,据正弦定理,有.∵,,,∴.(2)由平面几何知识,可知,在中,∵,,∴.∴.在中,据余弦定理,有∴点睛:此题考查了正弦定理、余弦定理的应用,利用正弦、余弦定理可以很好得解决了三角形的边角关系,熟练掌握定理是解本题的关键.在中,涉及三边三角,知三(除已知三角外)求三,可解出三角形,当涉及两边及其中一边的对角或两角及其中一角对边时,运用正弦定理求解;当涉及三边或两边及其夹角时,运用余弦定理求解.19、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)利用正弦定理,三角函数恒等变换,可得,结合范围,可求的值.(Ⅱ)方法1:由余弦定理,基本不等式可得,利用三角形的面积公式即可求解;方法2:由正弦定理可得,,并将其代入可得,然后再化简,根据正弦函数的图象和性质即可求得面积的最大值.【详解】解:(I)因为,由正弦定理可得:,所以所以,即,,所以,可得:,所以,所以,可得:(II)方法1:由余弦定理得:,得,所以当且仅当时取等号,所以△ABC面积的最大值为方法2:因为,所以,,所以,所以,当且仅当,即,当时取等号.所以△ABC面积的最大值为.【点睛】本题主要考查了正弦定理,三角函数恒等变换的应用,余弦定理,基本不等式,三角形的面积公式,正弦函数的图象和性质在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题.20、(1),;(2)【解析】
(1)利用坐标形式下向量的数量积运算以及二倍角公式、辅助角公式将化简为的形式,根据周期计算公式以及单调性求解公式即可得到结果;(2)分析在的值域,根据能成立的思想得到与满足的不等关系,求解出的范围即可.【详解】(1)∵,∴,∴的周期为,令,则,的单调递减区间为(2)∵,∴,在上递增,在上递减,且,∴,∴,即,若在上有解,则故:,解得.【点睛】本题考查向量与三角函函数的综合应用,其中着重考查了使用三角恒等变换进行化简以及利用正弦函数的性质分析值域从而求解参数范围,对于转化与计算的能力要求较高,难度一般.21、(1)B(0,7)(2)19x+y-7=0
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 华师大版初中科学6.1信息的传递和通信
- 天弘爱理财APP整合方案
- 外勤医疗服务管理制度
- 异常情况和事故处理管理制度
- 表格制作方法
- 1《古诗三首》核心素养分层学习任务单-2022-2023学年三年级语文下册新课标(部编版)
- 2024年合作办理客运从业资格证理论考试题
- 2024年北京汽车客运资格证考试题目
- 2024年宣城客运从业资格证报名考试题目
- 2024年本溪客运从业资格证模拟考试练习题
- 我有一盏小灯笼
- 湖南省建设工程质量检测收费项目和收费标准
- 职业倦怠量表MBIGS (MBIGeneral Survey)
- 9-1文化发展的必然选择 教学设计 高中政治统编版必修4(2023~2024学年)
- 预防一氧化碳中毒安全教育完整PPT
- 镇域经济的发展与思考
- 安全生产的目标设定与衡量指标
- 河道清淤施工方案和专项施工方案
- 早发性卵巢功能不全的临床诊疗专家共识(2023版)
- 守岛战士生活艰苦的资料
- 危重症常见的管道护理
评论
0/150
提交评论