河北省巨鹿县第二中学2025届高一数学第二学期期末复习检测试题含解析_第1页
河北省巨鹿县第二中学2025届高一数学第二学期期末复习检测试题含解析_第2页
河北省巨鹿县第二中学2025届高一数学第二学期期末复习检测试题含解析_第3页
河北省巨鹿县第二中学2025届高一数学第二学期期末复习检测试题含解析_第4页
河北省巨鹿县第二中学2025届高一数学第二学期期末复习检测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省巨鹿县第二中学2025届高一数学第二学期期末复习检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.要得到函数y=cos4x+πA.向左平移π3个单位长度 B.向右平移πC.向左平移π12个单位长度 D.向右平移π2.某高校进行自主招生,先从报名者中筛选出400人参加笔试,再按笔试成绩择优选出100人参加面试.现随机抽取了24名笔试者的成绩,统计结果如下表所示.分数段[60,65)[65,70)[70,75)[75,80)[80,85)[85,90]人数234951据此估计允许参加面试的分数线大约是()A.90 B.85C.80 D.753.角α的终边上有一点P(a,|a|),a∈R且a≠0,则sinα值为()A. B. C.1 D.或4.在中,三个内角成等差数列是的()A.充分非必要条件 B.必要非充分条件C.充要条件 D.既非充分又非必要条件5.某数学竞赛小组有3名男同学和2名女同学,现从这5名同学中随机选出2人参加数学竞赛(每人被选到的可能性相同).则选出的2人中恰有1名男同学和1名女同学的概率为()A. B. C. D.6.在中,,,为的外接圆的圆心,则()A. B.C. D.7.一组数据0,1,2,3,4的方差是A. B. C.2 D.48.函数的图象与函数的图象的交点个数为()A.3 B.2 C.1 D.09.用3种不同颜色给2个矩形随机涂色,每个矩形涂且只涂种颜色,则2个矩形颜色不同的概率为()A.13 B.12 C.210.在等比数列中,,,,则等于()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.与终边相同的最小正角是______.12.已知,则__________.13.在中,.以为圆心,2为半径作圆,线段为该圆的一条直径,则的最小值为_________.14.在中,角的对边分别为,若,则角________.15.如图,在四面体A-BCD中,已知棱AC的长为,其余各棱长都为1,则二面角A-CD-B的平面角的余弦值为________.16.已知向量,若向量与垂直,则等于_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.使用支付宝和微信支付已经成为广大消费者最主要的消费支付方式,某超市通过统计发现一周内超市每天的净利润(万元)与每天使用支付宝和微信支付的人数(千人)具有线性相关关系,并得到最近一周的7组数据如下表,并依此作为决策依据.(1)作出散点图,并求出回归方程(,精确到);(2)超市为了刺激周一消费,拟在周一开展使用支付宝和微信支付随机抽奖活动,总奖金7万元.根据市场调查,抽奖活动能使使用支付宝和微信支付消费人数增加7千人,试决策超市是否有必要开展抽奖活动?(3)超市管理层决定:从周一到周日,若第二天的净利润比前一天增长超过两成,则对全体员工进行奖励,在(Ⅱ)的决策下,求全体员工连续两天获得奖励的概率.参考数据:,,,.参考公式:,,.18.如图,单位圆与轴正半轴相交于点,圆上的动点从点出发沿逆时针旋转一周回到点,设(),的面积为(当三点共线时,),与的函数关系如图所示的程序框图.(1)写出程序框图中①②处的函数关系式;(2)若输出的值为,求点的坐标.19.如图,在三棱柱中,侧棱垂直于底面,,,分别是,的中点.(1)求证:平面平面;(2)求证:平面.20.学生会有共名同学,其中名男生名女生,现从中随机选出名代表发言.求:同学被选中的概率;至少有名女同学被选中的概率.21.如图,在四棱锥中,平面ABCD,底部ABCD为菱形,E为CD的中点.(Ⅰ)求证:BD⊥平面PAC;(Ⅱ)若∠ABC=60°,求证:平面PAB⊥平面PAE;(Ⅲ)棱PB上是否存在点F,使得CF∥平面PAE?说明理由.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

先化简得y=cos【详解】因为y=cos所以要得到函数y=cos4x+π3的图像,只需将函数故选:C【点睛】本题主要考查三角函数的图像的变换,意在考查学生对该知识的理解掌握水平,属于基础题.2、C【解析】

根据题意可从样本中数据的频率考虑,即按成绩择优选择频率为的,根据题意得到所选的范围后再求出对应的分数.【详解】由题意得,参加面试的频率为,结合表中的数据可得,样本中[80,90]的频率为,由样本估计总体知,分数线大约为80分.故选C.【点睛】本题考查统计图表的应用,解题的关键是理解题意,同时还要正确掌握统计中的常用公式,属于基础题.3、B【解析】

根据三角函数的定义,求出OP,即可求出的值.【详解】因为,所以,故选B.【点睛】本题主要考查三角函数的定义应用.4、B【解析】

根据充分条件和必要条件的定义结合等差数列的性质进行求解即可.【详解】在△ABC中,三个内角成等差数列,可能是A,C,B成等差数列,则A+B=2C,则C=60°,不一定满足反之若B=60°,则A+C=120°=2B,则A、B、C成等差数列,∴三个内角成等差数列是的必要非充分条件,故选:B.【点睛】本题主要考查充分条件和必要条件的判断,考查了等差中项的应用,属于基础题.5、A【解析】

把5名学生编号,然后写出任取2人的所有可能,按要求计数后可得概率.【详解】3名男生编号为,两名女生编号为,任选2人的所有情形为:,,共10种,其中恰有1名男生1名女生的有共6种,所以所求概率为.【点睛】本题考查古典概型,方法是列举法.6、A【解析】

利用正弦定理可求出的外接圆半径.【详解】由正弦定理可得,因此,,故选A.【点睛】本题考查利用正弦定理求三角形外接圆的半径,考查计算能力,属于基础题.7、C【解析】

先求得平均数,再根据方差公式计算。【详解】数据的平均数为:方差是=2,选C。【点睛】方差公式,代入计算即可。8、B【解析】由已知g(x)=(x-2)2+1,所以其顶点为(2,1),又f(2)=2ln2∈(1,2),可知点(2,1)位于函数f(x)=2lnx图象的下方,故函数f(x)=2lnx的图象与函数g(x)=x2-4x+5的图象有2个交点.9、C【解析】

由古典概型及概率计算公式得2个矩形颜色不同的概率为69【详解】用3种不同颜色给2个矩形随机涂色,每个矩形涂且只涂1种颜色,共32则2个矩形颜色不同共A3即2个矩形颜色不同的概率为69故选:C.【点睛】本题考查了古典概型及概率计算公式,属于基础题.10、C【解析】

直接利用等比数列公式计算得到答案.【详解】故选:C【点睛】本题考查了等比数列的计算,属于简单题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

根据终边相同的角的定义以及最小正角的要求,可确定结果.【详解】因为,所以与终边相同的最小正角是.故答案为:.【点睛】本题主要考查终边相同的角,属于基础题.12、【解析】13、-10【解析】

向量变形为,化简得,转化为讨论夹角问题求解.【详解】由题线段为该圆的一条直径,设夹角为,可得:,当夹角为时取得最小值-10.故答案为:-10【点睛】此题考查求平面向量数量积的最小值,关键在于根据平面向量的运算法则进行变形,结合线性运算化简求得,此题也可建立直角坐标系,三角换元设坐标利用函数关系求最值.14、【解析】

根据得,利用余弦定理即可得解.【详解】由题:,,,由余弦定理可得:,.故答案为:【点睛】此题考查根据余弦定理求解三角形的内角,关键在于熟练掌握余弦定理公式,准确计算求解.15、【解析】如图,取中点,中点,连接,由题可知,边长均为1,则,中,,则,得,所以二面角的平面角即,在中,,则,所以.点睛:本题采用几何法去找二面角,再进行求解.利用二面角的定义:公共边上任取一点,在两个面内分别作公共边的垂线,两垂线的夹角就是二面角的平面角,找到二面角的平面角,再求出对应三角形的三边,利用余弦定理求解(本题中刚好为直角三角形).16、2【解析】

根据向量的数量积的运算公式,列出方程,即可求解.【详解】由题意,向量,因为向量与垂直,所以,解得.故答案为:2.【点睛】本题主要考查了向量的坐标运算,以及向量的垂直关系的应用,着重考查了推理与运算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)见解析;(3)【解析】

(1)通过表格描点即可,先计算和,然后通过公式计算出线性回归方程;(2)先计算活动开展后使用支付宝和微信支付的人数为(千人),代入(1)问得到结果;(3)先判断周一到周日全体员工只有周二、周三、周四、周日获得奖励,从而确定基本事件,再找出连续两天获得奖励的基本事件,故可计算出全体员工连续两天获得奖励的概率.【详解】(1)散点图如图所示,关于的回归方程为(2)活动开展后使用支付宝和微信支付的人数为(千人)由(1)得,当时,此时超市的净利润约为,故超市有必要开展抽奖活动(3)由于,,,,,,故从周一到周日全体员工只有周二、周三、周四、周日获得奖励从周一到周日中连续两天,基本事件为(周一、周二),(周二、周三),(周三、周四),(周四、周五),(周五、周六),(周六、周日),共6个基本事件连续两天获得奖励的基本事件为(周二、周三),(周三、周四),共2个基本事件故全体员工连续两天获得奖励的概率为【点睛】本题主要考查线性回归方程,古典概率的计算,意在考查学生的阅读理解能力和分析能力,难度不大.18、(1)见解析;(2)见解析【解析】

(1)通过实际问题得到与的函数关系为分段函数,从而判断出程序框填的结果.(2)分类讨论时和时两种情形下的点Q坐标,从而得到答案.【详解】(1)当时,,当时,函数的解析式为,故程序框图中①②处的函数关系式分别是,(2)时,令,即,或,点的坐标为或时,令,即,或,点的坐标为或故点的坐标为【点睛】本题主要考查算法框图,三角函数的运用,意在考查学生的数形结合思想,分析实际问题的能力.19、(1)证明见解析(2)证明见解析【解析】

(1)根据线面垂直的判断定理得到平面;再由面面垂直的判定定理,即可得出结论成立;(2)取的中点,连接,,根据线面平行的判定定理,即可得出结论成立.【详解】(1)在三棱柱中,底面,所以.又因为,所以平面;又平面,所以平面平面;(2)取的中点,连接,.因为,,分别是,,的中点,所以,且,.因为,且,所以,且,所以四边形为平行四边形,所以,又因为平面,平面,所以平面.【点睛】本题主要考查证明面面垂直,以及证明线面平行,熟记线面垂直、面面垂直的判定定理,以及线面平行的判定定理即可,属于常考题型.20、(1)(2)【解析】

(1)用列举法列出所有基本事件,得到基本事件的总数和同学被选中的,然后用古典概型概率公式可求得;(2)利用对立事件的概率公式即可求得.【详解】解:选两名代表发言一共有,,共种情况,其中.被选中的情况是共种.所以被选中的概本为.不妨设四位同学为男同学,则没有女同学被选中的情况是:共种,则至少有一名女同学被选中的概率为.【点睛】本题考查了古典概型的概率公式和对立事件的概率公式,属基础题.21、(Ⅰ)见解析;(Ⅱ)见解析;(Ⅲ)见解析.【解析】

(Ⅰ)由题意利用线面垂直的判定定理即可证得题中的结论;(Ⅱ)由几何体的空间结构特征首先证得线面垂直,然后利用面面垂直的判断定理可得面面垂直;(Ⅲ)由题意,利用平行四边形的性质和线面平行的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论