




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省九师商周联盟2025届高一数学第二学期期末经典试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若等差数列的前5项之和,且,则()A.12 B.13 C.14 D.152.已知数列{an}的前n项和Sn=3n(λ-n)-6,若数列{an}单调递减,则λ的取值范围是A.(-∞,2) B.(-∞,3) C.(-∞,4) D.(-∞,5)3.平面向量与共线且方向相同,则的值为()A. B. C. D.4.若,,则()A. B. C. D.5.用分层抽样的方法从10盆红花和5盆蓝花中选出3盆,则所选红花和蓝花的盆数分别为A.2,1 B.1,2 C.0,3 D.3,06.若,则下列结论中:(1);(2);(3)若,则;(4)若,则的最小值为.其中正确结论的个数为()A.1 B.2 C.3 D.47.在中,,,则的形状是()A.钝角三角形 B.锐角三角形 C.直角三角形 D.不能确定8.已知为三条不同直线,为三个不同平面,则下列判断正确的是()A.若,,,,则B.若,,则C.若,,,则D.若,,,则9.观察下列几何体各自的三视图,其中有且仅有两个视图完全相同的是()①正方体②圆锥③正三棱柱④正四棱锥A.①② B.②④ C.①③ D.①④10.在ΔABC中,角A,B,C所对的边分别为a,b,c,若A=π3,B=π4,A.23 B.2 C.3 D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数的图象如下,则的值为__________.12.光线从点射向y轴,经过y轴反射后过点,则反射光线所在的直线方程是________.13.已知向量,,若向量与垂直,则__________.14.球的内接圆柱的表面积为,侧面积为,则该球的表面积为_______15.记为数列的前项和.若,则_______.16.已知直线是函数(其中)图象的一条对称轴,则的值为________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某市为增强市民的环境保护意识,面向全市征召义务宣传志愿者.现从符合条件的志愿者中随机抽取名按年龄分组:第组,第组,第组,第组,第组,得到的频率分布直方图如图所示.(1)若从第,,组中用分层抽样的方法抽取名志愿者参广场的宣传活动,应从第,,组各抽取多少名志愿者?(2)在(1)的条件下,该市决定在这名志愿者中随机抽取名志愿者介绍宣传经验,求第组志愿者有被抽中的概率.18.已知.(1)求的值;(2)若为第二象限角,且角终边在上,求的值.19.在△ABC中,a=7,b=8,cosB=–.(Ⅰ)求∠A;(Ⅱ)求AC边上的高.20.在中,角,,所对的边分别为,,,且,.(1)求证:是锐角三角形;(2)若,求的面积.21.已知两点,.(1)求直线AB的方程;(2)直线l经过,且倾斜角为,求直线l与AB的交点坐标.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】试题分析:由题意得,,又,则,又,所以等差数列的公差为,所以.考点:等差数列的通项公式.2、A【解析】
,,因为单调递减,所以,所以,且,所以只需,,且,所以,故选A.3、C【解析】
利用向量共线的坐标运算求解,验证得答案.【详解】向量与共线,,解得.当时,,,与共线且方向相同.当时,,,与共线且方向相反,舍去.故选.【点睛】本题考查向量共线的坐标运算,是基础的计算题.4、D【解析】
利用集合的补集的定义求出的补集;利用子集的定义判断出.【详解】解:,,,,故选:.【点睛】本题考查利用集合的交集、补集、并集定义求交集、补集、并集;利用集合包含关系的定义判断集合的包含关系.5、A【解析】
利用分层抽样的性质直接求解.【详解】解:用分层抽样的方法从10盆红花和5盆蓝花中选出3盆,则所选红花的盆数为:,所选蓝花的盆数为:.故选:A.【点睛】本题考查所选红花和蓝花的盆数的求法,考查分层抽样的性质等基础知识,考查运算求解能力,是基础题.6、B【解析】
利用函数知识、换元法、绝对值不等式等知识,对选项进行一一推理证明,即可得答案.【详解】对(1),,∴或,∵或,∴原不等式成立,故(1)正确;对(2),∵,故(2)正确;对(3),令,则,显然不成立,故(3)错误;对(4),∵,∴,当时,,∴的最小值为显然不成立,故(4)错误.故选:B.【点睛】本题考查函数与不等式的知识,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意消元法、换元法的使用.7、C【解析】
利用余弦定理求出,再利用余弦定理求得的值,即可判断三角形的形状.【详解】在中,,解得:;∵,∵,,∴是直角三角形.故选:C.【点睛】本题考查余弦定理的应用、三角形形状的判定,考查逻辑推理能力和运算求解能力.8、C【解析】
根据线线位置关系,线面位置关系,以及面面位置关系,逐项判断,即可得出结果.【详解】A选项,当时,由,可得,此时由,可得或或与相交;所以A错误;B选项,若,,则,或相交,或异面;所以B错误;C选项,若,,,根据线面平行的性质,可得,所以C正确;D选项,若,,则或,又,则,或相交,或异面;所以D错误;故选C【点睛】本题主要考查线面,面面有关命题的判定,熟记空间中点线面位置关系即可,属于常考题型.9、B【解析】
正方体的三个视图都相同,①不符合;圆锥的正视图和侧视图相同都是三角形,俯视图为圆,②符合;正三棱柱的俯视图是等边三角形,正视图和侧视图都是长方形,但是长不同宽相同,③不符合;正四棱锥的俯视图是正方形,正视图和侧视图都是相同的等腰三角形,④符合,故选B.10、A【解析】
利用正弦定理asinA=【详解】在ΔABC中,由正弦定理得asinA=故选:A.【点睛】本题考查利用正弦定理求边,要记得正弦定理所适用的基本类型,考查计算能力,属于基础题。二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
由函数的图象的顶点坐标求出,由半个周期求出,最后将特殊点的坐标求代入解析式,即可求得的值.【详解】解:由图象可得,,得.,将点代入函数解析式,得,,,又因为,所以故答案为:【点睛】本题考查由的部分图象确定其解析式.(1)根据函数的最高点的坐标确定(2)根据函数零点的坐标确定函数的周期求(3)利用最值点的坐标同时求的取值,即可得到函数的解析式.12、(或写成)【解析】
光线从点射向y轴,即反射光线反向延长线经过关于y轴的对称点,则反射光线通过和两个点,设直线方程求解即可。【详解】由题意可知,所求直线方程经过点关于y轴的对称点为,则所求直线方程为,即.【点睛】此题的关键点在于物理学上光线的反射光线和入射光线关于镜面对称,属于基础题目。13、【解析】,所以,解得.14、【解析】
设底面半径为,圆柱的高为,根据圆柱求得和的值,进而利用圆柱的轴截面求得球的半径,利用球的表面积公式,即可求解.【详解】由题意,设底面半径为,圆柱的高为,则圆柱的底面面积为,解得,侧面积,解得,则圆柱的轴截面是边长分别为4和3的矩形,其对角线长为5,所以外接球的半径为,所以球的表面积为.【点睛】本题主要考查了圆柱的表面积和侧面积公式的应用,以及球的表面积公式应用,其中解答中正确理解空间几何体的结构特征是解答的关键,着重考查了空间想象能力,以及推理与运算能力,属于基础题.15、【解析】
由和的关系,结合等比数列的定义,即可得出通项公式.【详解】当时,当时,即则数列是首项为,公比为的等比数列故答案为:【点睛】本题主要考查了已知求,属于基础题.16、【解析】
根据正弦函数图象的对称性可得,由此可得答案.【详解】依题意得,所以,即,因为,所以或,故答案为:【点睛】本题考查了正弦函数图象的对称轴,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)分别抽取人,人,人;(2)【解析】
(1)频率分布直方图各组频率等于各组矩形的面积,进而算出各组频数,再根据分层抽样总体及各层抽样比例相同求解;(2)列出从名志愿者中随机抽取名志愿者所有的情况,再根据古典概型概率公式求解.【详解】(1)第组的人数为,第组的人数为,第组的人数为,因为第,,组共有名志愿者,所以利用分层抽样的方法在名志愿者中抽取名志愿者,每组抽取的人数分别为:第组:;第组:;第组:.所以应从第,,组中分别抽取人,人,人.(2)设“第组的志愿者有被抽中”为事件.记第组的名志愿者为,,,第组的名志愿者为,,第组的名志愿者为,则从名志愿者中抽取名志愿者有:,,,,,,,,,,,,,,,共有种.其中第组的志愿者被抽中的有种,答:第组的志愿者有被抽中的概率为【点睛】本题考查频率分布直方图,分层抽样和古典概型,注意列举所有情况时不要遗漏.18、(1);(2)【解析】
(1)先根据诱导公式将原式子化简,再将已知条件中的表达式平方,可得到结果;(2)原式子可化简为,由已知条件可得到,再由第一问中得到,结合第一问中的条件可得到结果.【详解】(1)=已知,将式子两边平方可得到(2)为第二象限角,且角终边在上,则根据三角函数的定义得到原式化简等于由第一问得到将已知条件均代入可得到原式等于.【点睛】三角函数求值与化简必会的三种方法(1)弦切互化法:主要利用公式tanα=;形如,asin2x+bsinxcosx+ccos2x等类型可进行弦化切.(2)“1”的灵活代换法:1=sin2θ+cos2θ=(sinθ+cosθ)2-2sinθcosθ=tan等.(3)和积转换法:利用(sinθ±cosθ)2=1±2sinθcosθ,(sinθ+cosθ)2+(sinθ-cosθ)2=2的关系进行变形、转化.19、(1)∠A=(2)AC边上的高为【解析】分析:(1)先根据平方关系求,再根据正弦定理求,即得;(2)根据三角形面积公式两种表示形式列方程,再利用诱导公式以及两角和正弦公式求,解得边上的高.详解:解:(1)在△ABC中,∵cosB=–,∴B∈(,π),∴sinB=.由正弦定理得=,∴sinA=.∵B∈(,π),∴A∈(0,),∴∠A=.(2)在△ABC中,∵sinC=sin(A+B)=sinAcosB+sinBcosA==.如图所示,在△ABC中,∵sinC=,∴h==,∴AC边上的高为.点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.20、(1)证明见解析(2)【解析】
(1)由正弦定理、余弦定理得,则角C最大,由余弦定理可得答案.
(2)由平面向量数量积的运算及三角形的面积公式结合(1)可得,利用面积公式可求解.【详解】【详解】
(1)由,根据正弦定理得,又,所以即,所以,因此边最大,即角最大.设则即,所以是锐角三角形.(2)由(1)和,即可
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 绿竹种植协议书
- 猪粪消纳协议书
- 签下分手协议书
- 彩票站聘任店员协议书
- 逃离离婚协议书
- 罐车合伙协议书
- 纸上夫妻协议书
- 电梯工程协议书
- 化工煤买卖合同协议书
- 小语种课程转让协议书
- 2024年中国资源循环集团有限公司招聘笔试真题
- 2025-2030中国装备故障预测和健康管理(PHM)行业发展现状与前景预测分析研究报告
- 信息安全基础试题及答案
- 肛瘘护理查房
- T-PPAC 701-2021 企业商业秘密管理规范
- 经络腧穴学试题库与参考答案
- 2025年保健按摩师(高级)资格认证考试题库(附答案)
- 2024-2025人教七上数学26第3章代数式小结与复习【教案】
- 评估与反馈机制在教研中的重要性
- 供应商廉洁态发言材料
- 字节跳动经营分析报告
评论
0/150
提交评论