山东省普通高中2025届数学高一下期末学业质量监测试题含解析_第1页
山东省普通高中2025届数学高一下期末学业质量监测试题含解析_第2页
山东省普通高中2025届数学高一下期末学业质量监测试题含解析_第3页
山东省普通高中2025届数学高一下期末学业质量监测试题含解析_第4页
山东省普通高中2025届数学高一下期末学业质量监测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省普通高中2025届数学高一下期末学业质量监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.半径为的半圆卷成一个圆锥,它的体积是()A. B. C. D.2.已知点均在球上,,若三棱锥体积的最大值为,则球的体积为A. B. C.32 D.3.设,若关于的不等式在区间上有解,则()A. B. C. D.4.已知,则下列结论正确的是()A. B. C. D.不能确定5.过点且与直线垂直的直线方程为()A. B.C. D.6.已知,,则等于()A. B. C. D.7.已知球的直径SC=4,A,B是该球球面上的两点,AB=1.∠ASC=∠BSC=45°则棱锥S—ABC的体积为()A. B. C. D.8.不论为何值,直线恒过定点A. B. C. D.9.已知等差数列:1,a1,a2,9;等比数列:-9,b1,b2,b3,-1.则b2(a2-a1)的值为()A.8 B.-8C.±8 D.810.圆与圆的位置关系为()A.相交 B.相离 C.相切 D.内含二、填空题:本大题共6小题,每小题5分,共30分。11.已知向量、的夹角为,且,,则__________.12.将二进制数110转化为十进制数的结果是_____________.13.方程的解集为____________.14.在△中,三个内角、、的对边分别为、、,若,,,则________15.如图中,,,,M为AB边上的动点,,D为垂足,则的最小值为______;16.已知球的一个内接四面体中,,过球心,若该四面体的体积为,且,则球的表面积的最小值为_________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,菱形ABCD与正三角形BCE的边长均为2,且平面ABCD⊥平面BCE,平面ABCD,.(I)求证:平面ABCD;(II)求证:平面ACF⊥平面BDF.18.已知四棱锥的底面是菱形,底面,是上的任意一点求证:平面平面设,求点到平面的距离在的条件下,若,求与平面所成角的正切值19.求适合下列条件的直线方程:经过点,倾斜角等于直线的倾斜角的倍;经过点,且与两坐标轴围成一个等腰直角三角形。20.已知海岛在海岛北偏东,,相距海里,物体甲从海岛以海里/小时的速度沿直线向海岛移动,同时物体乙从海岛沿着海岛北偏西方向以海里/小时的速度移动.(1)问经过多长时间,物体甲在物体乙的正东方向;(2)求甲从海岛到达海岛的过程中,甲、乙两物体的最短距离.21.已知数列的前项和,满足.(1)若,求数列的通项公式;(2)在满足(1)的条件下,求数列的前项和的表达式;

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

根据圆锥的底面圆周长等于半圆弧长可计算出圆锥底面圆半径,由勾股定理可计算出圆锥的高,再利用锥体体积公式可计算出圆锥的体积.【详解】设圆锥的底面圆半径为,高为,则圆锥底面圆周长为,得,,所以,圆锥的体积为,故选:A.【点睛】本题考查圆锥体积的计算,解题的关键就是要计算出圆锥底面圆的半径和高,解题时要从已知条件列等式计算,并分析出一些几何等量关系,考查空间想象能力与计算能力,属于中等题.2、A【解析】

设是的外心,则三棱锥体积最大时,平面,球心在上.由此可计算球半径.【详解】如图,设是的外心,则三棱锥体积最大时,平面,球心在上.∵,∴,即,∴.又,∴,.∵平面,∴,设球半径为,则由得,解得,∴球体积为.故选A.【点睛】本题考查球的体积,关键是确定球心位置求出球的半径.3、D【解析】

根据题意得不等式对应的二次函数开口向上,分别讨论三种情况即可.【详解】由题意得:当当当综上所述:,选D.【点睛】本题主要考查了含参一元二次不等式中参数的取值范围.解这类题通常分三种情况:.有时还需要结合韦达定理进行解决.4、C【解析】

根据题意,求出与的值,比较易得,变形可得答案.【详解】解:根据题意,,,易得,则有,故选:C.【点睛】本题主要考查不等式的大小比较,属于基础题.5、A【解析】

先根据求出与之垂直直线的斜率,再利用点斜式求得直线方程。【详解】由可得直线斜率,根据两直线垂直的关系,求得,再利用点斜式,可求得直线方程为,化简得,选A【点睛】当直线斜率存在时,直线垂直的斜率关系为6、D【解析】

通过化简可得,再根据,可得,利用同角三角函数可得,则答案可得.【详解】解:,又,得,即,又,且,解得,,故选:D.【点睛】本题考查三角恒等变形的化简和求值,是中档题.7、C【解析】如图所示,由题意知,在棱锥SABC中,△SAC,△SBC都是等腰直角三角形,其中AB=1,SC=4,SA=AC=SB=BC=1.取SC的中点D,易证SC垂直于面ABD,因此棱锥SABC的体积为两个棱锥SABD和CABD的体积和,所以棱锥SABC的体积V=SC·S△ADB=×4×=.8、B【解析】

根据直线方程分离参数,再由直线过定点的条件可得方程组,解方程组进而可得m的值.【详解】恒过定点,恒过定点,由解得即直线恒过定点.【点睛】本题考查含有参数的直线过定点问题,过定点是解题关键.9、B【解析】a2-a1=d=9-13又b22=b1b因为b2与-9,-1同号,所以b2=-3.所以b2(a2-a1)=-3×8本题选择B选项.10、B【解析】

首先把两个圆的一般方程转化为标准方程,求出其圆心坐标和半径,再比较圆心距与半径的关系即可.【详解】有题知:圆,即:,圆心,半径.圆,即:,圆心,半径.所以两个圆的位置关系是相离.故选:B【点睛】本题主要考查圆与圆的位置关系,比较圆心距和半径的关系是解决本题的关键,属于简单题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

根据向量的数量积的应用进行转化即可.【详解】,与的夹角为,∴•||||cos4,则,故答案为.【点睛】本题主要考查向量长度的计算,根据向量数量积的应用是解决本题的关键.12、6【解析】

将二进制数从右开始,第一位数字乘以2的0次幂,第二位数字乘以2的1次幂,以此类推,进行计算即可.【详解】,故答案为:6.【点睛】本题考查进位制,解题关键是了解不同进制数之间的换算法则,属于基础题.13、或【解析】

首先将原方程利用辅助角公式化简为,再求出的值即可.【详解】由题知:,,.所以或,.解得:或.所以解集为:或.故答案为:或【点睛】本题主要考查正弦函数的图像及特殊角的三角函数值,同时考查了辅助角公式,属于中档题.14、【解析】

利用正弦定理求解角,再利用面积公式求解即可.【详解】由,因为,故,.故.故答案为:【点睛】本题主要考查了解三角形的运用,根据题中所给的边角关系选择正弦定理与面积公式等.属于基础题型.15、【解析】

以为坐标原点建立平面直角坐标系,用坐标表示出的值,然后利用换元法求解出对应的最小值即可.【详解】如图所示,设,所以,根据条件可知:,所以,设,,,所以,所以,所以,所以当时,有最小值,最小值为.故答案为:.【点睛】本题考查利用坐标法以及换元法求解最值,着重考查逻辑推理和运算求解的能力,属于较难题(1)利用换元法求解最值时注意,换元后新元的取值范围;(2)三角函数中的一组“万能公式”:,.16、【解析】

求出面积的最大值,结合棱锥的体积可得到平面距离的最小值,进一步求得球的半径的最小值得答案.【详解】解:在中,由,且,

得,得.

当且仅当时,有最大值1.

过球心,且四面体的体积为1,

∴三棱锥的体积为.

则到平面的距离为.

此时的外接圆的半径为,则球的半径的最小值为,

∴球O的表面积的最小值为.

故答案为:.【点睛】本题考查多面体外接球表面积最值的求法,考查逻辑思维能力与推理运算能力,考查空间想象能力,是中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ)见解析;(Ⅱ)见解析.【解析】(1)添加辅助线,通过证明线线平行来证明线面平行.(2)通过证明线面垂直面,来证明面面.(Ⅰ)证明:如图,过点作于,连接,∴.∵平面⊥平面,平面,平面平面,∴⊥平面,又∵⊥平面,,∴,.∴四边形为平行四边形.∴.∵平面,平面,∴平面.(Ⅱ)证明:面,,又四边形是菱形,,又,面,又面,从而面面.点晴:本题考查的是空间线面的平行和垂直关系.第一问要考查的是线面平行,通过先证明,得四边形为平行四边形.证得,可得平面,这里对于线面平行的条件平面,平面要写全;第二问中通过先证明面,再结合面,从而面面.18、(1)见解析(2)(3)【解析】

(1)由平面,得出,由菱形的性质得出,利用直线与平面垂直的判定定理得出平面,再利用平面与平面垂直的判定定理可证出结论;(2)先计算出三棱锥的体积,并计算出的面积,利用等体积法计算出三棱锥的高,即为点到平面的距离;(3)由(1)平面,于此得知为直线与平面所成的角,由,得出平面,于此计算出,然后在中计算出即可.【详解】(1)平面,平面,,四边形是菱形,,平面;又平面,所以平面平面.(2)设,连结,则,四边形是菱形,,,,设点到平面的距离为平面,,,解得,即点到平面的距离为;(3)由(1)得平面,为与平面所成角,平面,,与平面所成角的正切值为.【点睛】本题考查平面与平面垂直的证明、点到平面的距离以及直线与平面所成的角,求解点到平面的距离,常用的方法是等体积法,将问题转化为三棱锥的高来计算,考查空间想象能力与推理能力,属于中等题.19、(1)(2)或【解析】

(1)根据倾斜角等于直线的倾斜角的倍,求出直线的倾斜角,再利用点斜式写出直线。(2)与两坐标轴围成一个等腰直角三角形等价于直线的斜率为.【详解】(1)已知,直线方程为化简得(2)由题意可知,所求直线的斜率为.又过点,由点斜式得,所求直线的方程为或【点睛】本题考查直线方程,属于基础题。20、(1)小时;(2)海里.【解析】

试题分析:(1)设经过小时,物体甲在物体乙的正东方向,因为小时,所以.则物体甲与海岛的距离为海里,物体乙与海岛距离为海里.在中由正弦定理可求得的值.(2)在中用余弦定理求,再根据二次函数求的最小值.试题解析:解:(1)设经过小时,物体甲在物体乙的正东方向.如图所示,物体甲与海岛的距离为海里,物体乙与海岛距离为海里,,中,由正弦定理得:,即,则.(2)由(1)题设,,,由余弦定理得:∵

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论