湖南省邵东县创新实验学校2025届高一下数学期末监测模拟试题含解析_第1页
湖南省邵东县创新实验学校2025届高一下数学期末监测模拟试题含解析_第2页
湖南省邵东县创新实验学校2025届高一下数学期末监测模拟试题含解析_第3页
湖南省邵东县创新实验学校2025届高一下数学期末监测模拟试题含解析_第4页
湖南省邵东县创新实验学校2025届高一下数学期末监测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省邵东县创新实验学校2025届高一下数学期末监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知非零向量满足,且,则与的夹角为A. B. C. D.2.已知点和点,且,则实数的值是()A.5或-1 B.5或1 C.2或-6 D.-2或63.已知某路段最高限速60km/h,电子监控测得连续6辆汽车的速度用茎叶图表示如图所示(单位:km/h),若从中任抽取2辆汽车,则恰好有1辆汽车超速的概率为()A. B. C. D.4.在区间上任取两个实数,则满足的概率为()A. B. C. D.5.中,角所对的边分别为,已知向量,,且共线,则的形状是()A.等腰三角形 B.直角三角形C.等腰直角三角形 D.等腰三角形或直角三角形6.在递增的等比数列an中,a4,a6是方程x2A.2 B.±2 C.12 D.17.为了得到函数的图象,只需将函数图象上所有的点()A.向左平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向右平移个单位长度8.在空间直角坐标系中,点关于平面对称的点的坐标为()A. B. C. D.9.在平面直角坐标系中,,分别是轴和轴上的动点,若直线恰好与以为直径的圆相切,则圆面积的最小值为()A. B. C. D.10.在中,若,则的面积为().A.8 B.2 C. D.4二、填空题:本大题共6小题,每小题5分,共30分。11.已知,,且,若恒成立,则实数的取值范围是____.12.已知数列的通项公式,则____________.13.若是等比数列,,,则________14.给出下列五个命题:①函数的一条对称轴是;②函数的图象关于点(,0)对称;③正弦函数在第一象限为增函数;④若,则,其中;⑤函数的图像与直线有且仅有两个不同的交点,则的取值范围为.以上五个命题中正确的有(填写所有正确命题的序号)15.等比数列的公比为,其各项和,则______________.16.已知,,则______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)若,且对任意的,恒成立,求实数的取值范围;(2)求,解关于的不等式.18.如图,在平面直角坐标系中,锐角、的终边分别与单位圆交于、两点.(1)如果,点的横坐标为,求的值;(2)已知点,函数,若,求.19.如图,已知矩形ABCD中,,,M是以CD为直径的半圆周上的任意一点(与C,D均不重合),且平面平面ABCD.(1)求证:平面平面BCM;(2)当四棱锥的体积最大时,求AM与CD所成的角.20.某市为增强市民的环境保护意识,面向全市征召义务宣传志愿者.现从符合条件的志愿者中随机抽取名按年龄分组:第组,第组,第组,第组,第组,得到的频率分布直方图如图所示.(1)若从第,,组中用分层抽样的方法抽取名志愿者参广场的宣传活动,应从第,,组各抽取多少名志愿者?(2)在(1)的条件下,该市决定在这名志愿者中随机抽取名志愿者介绍宣传经验,求第组志愿者有被抽中的概率.21.已知,是第四象限角,求和的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

本题主要考查利用平面向量数量积计算向量长度、夹角与垂直问题,渗透了转化与化归、数学计算等数学素养.先由得出向量的数量积与其模的关系,再利用向量夹角公式即可计算出向量夹角.【详解】因为,所以=0,所以,所以=,所以与的夹角为,故选B.【点睛】对向量夹角的计算,先计算出向量的数量积及各个向量的摸,在利用向量夹角公式求出夹角的余弦值,再求出夹角,注意向量夹角范围为.2、A【解析】

根据空间中两点间距离公式建立方程求得结果.【详解】解得:或本题正确选项:【点睛】本题考查空间中两点间距离公式的应用,属于基础题.3、A【解析】

求出基本事件的总数,以及满足题意的基本事件数目,即可求解概率.【详解】解:由题意任抽取2辆汽车,其速度分别为:,共15个基本事件,其中恰好有1辆汽车超速的有,,共8个基本事件,则恰好有1辆汽车超速的概率为:,故选:A.【点睛】本题考查古典概型的概率的求法,属于基本知识的考查.4、B【解析】试题分析:因为,在区间上任取两个实数,所以区域的面积为4,其中满足的平面区域面积为,故满足的概率为,选B.考点:本题主要考查几何概型概率计算.点评:简单题,几何概型概率的计算,关键是认清两个“几何度量”.5、D【解析】

由向量共线的坐标表示得一等式,然后由正弦定理化边为角,利用诱导公式得展开后代入原式化简得,分类讨论得解.【详解】∵共线,∴,即,,,整理得,所以或,或或(舍去).∴三角形为直角三角形或等腰三角形.故选:D.【点睛】本题考查三角形形状的判断,考查向量共线的坐标表示,考查正弦定理,两角和的正弦公式,考查三角函数性质.解题时不能随便约分漏解.6、A【解析】

先解方程求出a4,a6,然后根据等比数列满足【详解】∵a4,a6是方程x2-10x+16=0的两个根,∴a4+a6=10,a4【点睛】本题考查等比数列任意两项的关系,易错点是数列an为递增数列,那么又q>17、C【解析】

利用诱导公式,的图象变换规律,得出结论.【详解】为了得到函数的图象,

只需将函数图象上所有的点向左平移个单位长度,

故选C.8、C【解析】

纵竖坐标不变,横坐标变为相反数.【详解】点关于平面对称的点的坐标为.故选C.【点睛】本题考查空间直角坐标系,属于基础题.9、A【解析】

根据题意画出图像,数形结合,根据圆面积最小的条件转化为直径等于原点到直线的距离,再求解圆面积即可.【详解】根据题意画出图像如图所示,圆心为线段中点,为直角三角形,所以,作直线且交于点,直线与圆相切,所以,要使圆面积的最小,即使半径最小,由图知,当点、、共线时,圆的半径最小,此时原点到直线的距离为,由点到直线的距离公式:,解得,所以圆面积的最小值.故选:A【点睛】本题主要考查点到直线距离公式和圆切线的应用,考查学生分析转化能力和数形结合的思想,属于中档题.10、C【解析】

由正弦定理结合已知,可以得到的关系,再根据余弦定理结合,可以求出的值,再利用三角形面积公式求出三角形的面积即可.【详解】由正弦定理可知:,而,所以有,由余弦定理可知:,所以,因此的面积为,故本题选C.【点睛】本题考查了正弦定理、余弦定理、三角形面积公式,考查了数学运算能力.二、填空题:本大题共6小题,每小题5分,共30分。11、(-4,2)【解析】试题分析:因为当且仅当时取等号,所以考点:基本不等式求最值12、【解析】

将代入即可求解【详解】令,可得.故答案为:【点睛】本题考查求数列的项,是基础题13、【解析】

根据等比数列的通项公式求解公比再求和即可.【详解】设公比为,则.故故答案为:【点睛】本题主要考查了等比数列的基本量求解,属于基础题型.14、①②⑤【解析】试题分析:①将代入可得函数最大值,为函数对称轴;②函数的图象关于点对称,包括点;③,③错误;④利用诱导公式,可得不同于的表达式;⑤对进行讨论,利用正弦函数图象,得出函数与直线仅有有两个不同的交点,则.故本题答案应填①②⑤.考点:三角函数的性质.【知识点睛】本题主要考查三角函数的图象性质.对于和的最小正周期为.若为偶函数,则当时函数取得最值,若为奇函数,则当时,.若要求的对称轴,只要令,求.若要求的对称中心的横坐标,只要令即可.15、【解析】

利用等比数列各项和公式可得出关于的方程,解出即可.【详解】由于等比数列的公比为,其各项和,可得,解得.故答案为:.【点睛】本题考查等比数列中基本量的计算,利用等比数列各项和公式列等式是关键,考查计算能力,属于基础题.16、【解析】

利用同角三角函数的基本关系求得的值,利用二倍角的正切公式,求得,再利用两角和的正切公式,求得的值,再结合的范围,求得的值.【详解】,,,,,,故答案:.【点睛】本题主要考查同角三角函数的基本关系,两角和的正切公式,二倍角的正切公式,根据三角函数的值求角,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)见解析【解析】

(1)由题意,若,则函数关于对称,根据二次函数对称性,可求,代入化简得在上恒成立,由,知当为最小值,根据恒成立思想,令最小值,即可求解;(2)根据题意,由,化简一元二次不等式为,讨论参数范围,写出解集即可.【详解】解:(1)若,所以函数对称轴,.,即在恒成立,即在上恒成立所以,又,故(2),所以;原不等式变为,因为,所以.所以当,即时,解为;当时,解集为;当,即时,解为综上,当时,不等式的解集为;当时,不等式的解集为必;当时,不等式的解隼为【点睛】本题考查(1)函数恒成立问题;(2)含参一元二次不等式的解法;考查计算能力,考查分类讨论思想,属于中等题型.18、(1);(2)【解析】

(1)根据条件求出的正余弦值,利用两角和的余弦公式计算即可(2)利用向量的数量积坐标公式运算可得,由求出即可求解.【详解】(1),为锐角,则,点的横坐标为,即有,,则;(2)由题意可知,,,则,即,由,可得,则,即有..【点睛】本题主要考查了单位圆,三角函数的定义,同角三角函数之间的关系,向量数量积的坐标运算,属于中档题.19、(1)证明见解析(2)【解析】

(1)只证明CM⊥平面ADM即可,即证明CM垂直于该平面内的两条相交直线,或者使用面面垂直的性质,本题的条件是平面CDM⊥平面ABCD,而M是以CD为直径的半圆周上一点,能够得到CM⊥DM,由面面垂直的性质即可证明;(2)当四棱锥M一ABCD的体积最大时,M为半圆周中点处,可得角MAB就是AM与CD所成的角,利用已知即可求解.【详解】(1)证明:CD为直径,所以CMDM,已知平面CDM平面ABCD,ADCD,AD平面CDM,所以ADCM又DMAD=DCM平面ADM又CM平面BCM,平面ADM平面BCM,(2)当M为半圆弧CD的中点时,四棱锥的体积最大,此时,过点M作MOCD于点E,平面CDM平面ABCDMO平面ABCD,即MO为四棱锥的高又底面ABCD面积为定值2,AM与CD所成的角即AM与AB所成的角,求得,三角形为正三角形,,故AM与CD所成的角为【点睛】本题主要考查异面直线成的角,面面垂直的判定定理,属于中档题.解答空间几何体中垂直关系时,一般要根据已知条件把空间中的线线、线面、面面之间垂直关系进行转化,转化时要正确运用有关的定理,找出足够的条件进行推理.20、(1)分别抽取人,人,人;(2)【解析】

(1)频率分布直方图各组频率等于各组矩形的面积,进而算出各组频数,再根据分层抽样总体及各层抽样比例相同求解;(2)列出从名志愿者中随机抽取名志愿者所有的情况,再根据古典概型概率公式求解.【详解】(1)第组的人数为,第组的人数为,第组的人数为,因为第,,组共有名志愿者,所以利用分层抽样的方法在名志愿者中抽取名志愿者,每组抽取的人数分别为:第组:;第组:;第组:.所以应从第,,组中分别抽取人,人,人.(2)设“第组的志愿者有被抽中”为事件.记第组的名志

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论